ISAAC AZEVEDO SILVA

(Fonte: Lattes)
Índice h a partir de 2011
4
Projetos de Pesquisa
Unidades Organizacionais

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • article 9 Citação(ões) na Scopus
    Mesenteric hypoperfusion and inflammation induced by brain death are not affected by inhibition of the autonomic storm in rats
    (2015) SIMAS, Rafael; FERREIRA, Sueli G.; MENEGAT, Laura; ZANONI, Fernando L.; CORREIA, Cristiano J.; SILVA, Isaac A.; SANNOMIYA, Paulina; MOREIRA, Luiz F.P.
    OBJECTIVES: Brain death is typically followed by autonomic changes that lead to hemodynamic instability, which is likely associated with microcirculatory dysfunction and inflammation. We evaluated the role of the microcirculation in the hemodynamic and inflammatory events that occur after brain death and the effects of autonomic storm inhibition via thoracic epidural blockade on mesenteric microcirculatory changes and inflammatory responses. METHODS: Male Wistar rats were anesthetized and mechanically ventilated. Brain death was induced via intracranial balloon inflation. Bupivacaine (brain death-thoracic epidural blockade group) or saline (brain death group) infusion via an epidural catheter was initiated immediately before brain death induction. Sham-operated animals were used as controls (SH group). The mesenteric microcirculation was analyzed via intravital microscopy, and the expression of adhesion molecules was evaluated via immunohistochemistry 180 min after brain death induction. RESULTS: A significant difference in mean arterial pressure behavior was observed between the brain death-thoracic epidural blockade group and the other groups, indicating that the former group experienced autonomic storm inhibition. However, the proportion of perfused small vessels in the brain death-thoracic epidural blockade group was similar to or lower than that in the brain death and SH groups, respectively. The expression of intercellular adhesion molecule 1 was similar between the brain death-thoracic epidural blockade and brain death groups but was significantly lower in the SH group than in the other two groups. The number of migrating leukocytes in the perivascular tissue followed the same trend for all groups. CONCLUSIONS: Although thoracic epidural blockade effectively inhibited the autonomic storm, it did not affect mesenteric hypoperfusion or inflammation induced by brain death.
  • conferenceObject
    Brain death impairs microcirculation with or without autonomic storm: an intravital microscopy study with thoracic epidural anesthesia in rats
    (2013) SILVA, Isaac Azevedo; SIMAS, Rafael; MENEGAT, Laura; CORREIA, Cristiano de Jesus; FERREIRA, Sueli Gomes; SANNOMIYA, Paulina; MOREIRA, Luiz Felipe Pinho
  • article 4 Citação(ões) na Scopus
    Inhibition of Autonomic Storm by Epidural Anesthesia Does Not Influence Cardiac Inflammatory Response After Brain Death in Rats
    (2012) SILVA, I. A.; CORREIA, C. J.; SIMAS, R.; CORREIA, C. D. J.; CRUZ, J. W. M. C.; FERREIRA, S. G.; ZANONI, F. L.; MENEGAT, L.; SANNOMIYA, P.; MOREIRA, L. F. P.
    Background. After brain death (BD) donors usually experience cardiac dysfunction, which is responsible for a considerable number of unused organs. Causes of this cardiac dysfunction are not fully understood. Some authors argue that autonomic storm with severe hemodynamic instability leads to inflammatory activation and myocardial dysfunction. Objectives. To investigate the hypothesis that thoracic epidural anesthesia blocks autonomic storm and improves graft condition by reducing the inflammatory response. Methods. Twenty-eight male Wistar rats (250-350 g) allocated to four groups received saline or bupivacaine via an epidural catheter at various times in relation to brain-death induction. Brain death was induced by a sudden increase in intracranial pressure by rapid inflation of a ballon catheter in the extradural space. Blood gases, electrolytes, and lactate analyses were performed at time zero, and 3 and 6 hours. Blood leukocytes were counted at 0 and 6 hours. After 6 hours of BD, we performed euthanasia to measure vascular adhesion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, Bcl-2 and caspase-3 on cardiac tissue. Results. Thoracic epidural anesthesia was effective to block the autonomic storm with a significant difference in mean arterial pressure between the untreated (saline) and the bupivacaine group before BD (P < .05). However, no significant difference was observed for the expressions of VCAM-1, ICAM-1, TNF-alpha, IL-1 beta, Bcl-2, and caspase-3 (P > .05). Conclusion. Autonomic storm did not seem to be responsible for the inflammatory changes associated with BD; thoracic epidural anesthesia did not modify the expression of inflammatory mediators although it effectively blocked the autonomic storm.
  • article 1 Citação(ões) na Scopus
    Inhibition of Autonomic Storm by Epidural Anesthesia Does Not Influence Cardiac Inflammatory Response After Brain Death in Rats (September, pg 2213, 2012)
    (2012) SILVA, I. A.; CORREIA, C. J.; SIMAS, R.; CRUZ, J. W. M. C.; FERREIRA, S. G.; ZANONI, F. L.; MENEGAT, L.; SANNOMIYA, P.; MOREIRA, L. F. P.
  • conferenceObject
    INHIBITION OF AUTONOMIC STORM DOES NOT IMPROVE MICROCIRCULATORY IMPAIRMENT AND INFLAMMATORY RESPONSE IN BRAIN DEAD RATS
    (2013) SIMAS, Rafael; SILVA, Isaac Azevedo; MENEGAT, Laura; FERREIRA, Sueli Gomes; CORREIA, Cristianode Jesus; SANNOMIYA, Paulina; MOREIRA, Luiz Felipe