RAFAEL RIBEIRO ALMEIDA

(Fonte: Lattes)
Índice h a partir de 2011
13
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • conferenceObject
    Whole exome sequencing of Chagas disease cardiomyopathy families reveals accumulation of rare variants in mitochondrial and inflammation-associated genes
    (2019) CUNHA-NETO, E.; MARQUET, S.; FRADE, A. Farage; FERREIRA, A. Mota; OUARHACHE, M.; IANNI, B.; FERREIRA, L. Rodrigues Pinto; RIGAUD, V. Oliveira-Carvalho; ALMEIDA, R. Ribeiro; CANDIDO, D.; TORRES, M.; GALLARDO, F.; FERNANDES, R.; MADY, C.; BUCK, P.; CARDOSO, C.; SANTOS-JUNIOR, O. R.; OLIVEIRA, L. C.; OLIVEIRA, C. D. L.; NUNES, M. do Carmo; ABEL, L.; KALIL, J.; RIBEIRO, A. L. P.; SABINO, E. C.; CHEVILLARD, C.
  • article 8 Citação(ões) na Scopus
    Rare Pathogenic Variants in Mitochondrial and Inflammation-Associated Genes May Lead to Inflammatory Cardiomyopathy in Chagas Disease
    (2021) OUARHACHE, Maryem; MARQUET, Sandrine; FRADE, Amanda Farage; FERREIRA, Ariela Mota; IANNI, Barbara; ALMEIDA, Rafael Ribeiro; NUNES, Joao Paulo Silva; FERREIRA, Ludmila Rodrigues Pinto; RIGAUD, Vagner Oliveira-Carvalho; CANDIDO, Darlan; MADY, Charles; ZANIRATTO, Ricardo Costa Fernandes; BUCK, Paula; TORRES, Magali; GALLARDO, Frederic; ANDRIEUX, Pauline; BYDLOWSKY, Sergio; LEVY, Debora; ABEL, Laurent; CARDOSO, Clareci Silva; SANTOS-JUNIOR, Omar Ribeiro; OLIVEIRA, Lea Campos; OLIVEIRA, Claudia Di Lorenzo; NUNES, Maria Do Carmo; COBAT, Aurelie; KALIL, Jorge; RIBEIRO, Antonio Luiz; SABINO, Ester Cerdeira; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Cardiomyopathies are an important cause of heart failure and sudden cardiac death. Little is known about the role of rare genetic variants in inflammatory cardiomyopathy. Chronic Chagas disease cardiomyopathy (CCC) is an inflammatory cardiomyopathy prevalent in Latin America, developing in 30% of the 6 million patients chronically infected by the protozoan Trypanosoma cruzi, while 60% remain free of heart disease (asymptomatic (ASY)). The cytokine interferon-gamma and mitochondrial dysfunction are known to play a major pathogenetic role. Chagas disease provides a unique model to probe for genetic variants involved in inflammatory cardiomyopathy. Methods We used whole exome sequencing to study nuclear families containing multiple cases of Chagas disease. We searched for rare pathogenic variants shared by all family members with CCC but absent in infected ASY siblings and in unrelated ASY. Results We identified heterozygous, pathogenic variants linked to CCC in all tested families on 22 distinct genes, from which 20 were mitochondrial or inflammation-related - most of the latter involved in proinflammatory cytokine production. Significantly, incubation with IFN-gamma on a human cardiomyocyte line treated with an inhibitor of dihydroorotate dehydrogenase brequinar (enzyme showing a loss-of-function variant in one family) markedly reduced mitochondrial membrane potential (Delta psi M), indicating mitochondrial dysfunction. Conclusion Mitochondrial dysfunction and inflammation may be genetically determined in CCC, driven by rare genetic variants. We hypothesize that CCC-linked genetic variants increase mitochondrial susceptibility to IFN-gamma-induced damage in the myocardium, leading to the cardiomyopathy phenotype in Chagas disease. This mechanism may also be operative in other inflammatory cardiomyopathies.
  • article 3 Citação(ões) na Scopus
    Epigenetic regulation of transcription factor binding motifs promotes Th1 response in Chagas disease cardiomyopathy
    (2022) BROCHET, Pauline; IANNI, Barbara Maria; LAUGIER, Laurie; FRADE, Amanda Farage; NUNES, Joao Paulo Silva; TEIXEIRA, Priscila Camillo; MADY, Charles; FERREIRA, Ludmila Rodrigues Pinto; FERRE, Quentin; SANTOS, Ronaldo Honorato Barros; KURAMOTO, Andreia; CABANTOUS, Sandrine; STEFFEN, Samuel; STOLF, Antonio Noedir; POMERANTZEFF, Pablo; FIORELLI, Alfredo Inacio; BOCCHI, Edimar Alcides; PISSETTI, Cristina Wide; SABA, Bruno; CANDIDO, Darlan da Silva; DIAS, Fabricio C.; SAMPAIO, Marcelo Ferraz; GAIOTTO, Fabio Antonio; MARIN-NETO, Jose Antonio; FRAGATA, Abilio; ZANIRATTO, Ricardo Costa Fernandes; SIQUEIRA, Sergio; PEIXOTO, Giselle De Lima; RIGAUD, Vagner Oliveira-Carvalho; BACAL, Fernando; BUCK, Paula; ALMEIDA, Rafael Ribeiro; LIN-WANG, Hui Tzu; SCHMIDT, Andre; MARTINELLI, Martino; HIRATA, Mario Hiroyuki; DONADI, Eduardo Antonio; PEREIRA, Alexandre Costa; RODRIGUES JUNIOR, Virmondes; PUTHIER, Denis; KALIL, Jorge; SPINELLI, Lionel; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS's DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.
  • article 0 Citação(ões) na Scopus
    Blood DNA methylation marks discriminate Chagas cardiomyopathy disease clinical forms
    (2022) BROCHET, Pauline; IANNI, Barbara; NUNES, Joao P. S.; FRADE, Amanda F.; TEIXEIRA, Priscila C.; MADY, Charles; FERREIRA, Ludmila R. P.; KURAMOTO, Andreia; PISSETTI, Cristina W.; SABA, Bruno; CANDIDO, Darlan D. S.; DIAS, Fabricio; SAMPAIO, Marcelo; MARIN-NETO, Jose A.; FRAGATA, Abilio; ZANIRATTO, Ricardo C. F.; SIQUEIRA, Sergio; PEIXOTO, Giselle D. L.; RIGAUD, Vagner O. C.; BUCK, Paula; ALMEIDA, Rafael R.; LIN-WANG, Hui Tzu; SCHMIDT, Andre; MARTINELLI, Martino; HIRATA, Mario H.; DONADI, Eduardo; JUNIOR, Virmondes Rodrigues; PEREIRA, Alexandre C.; KALIL, Jorge; SPINELLI, Lionel; CUNHA-NETO, Edecio; CHEVILLARD, Christophe
    Chagas disease is a parasitic disease from South America, affecting around 7 million people worldwide. Decades after the infection, 30% of people develop chronic forms, including Chronic Chagas Cardiomyopathy (CCC), for which no treatment exists. Two stages characterized this form: the moderate form, characterized by a heart ejection fraction (EF) >= 0.4, and the severe form, associated to an EF < 0.4. We propose two sets of DNA methylation biomarkers which can predict in blood CCC occurrence, and CCC stage. This analysis, based on machine learning algorithms, makes predictions with more than 95% accuracy in a test cohort. Beyond their predictive capacity, these CpGs are located near genes involved in the immune response, the nervous system, ion transport or ATP synthesis, pathways known to be deregulated in CCCs. Among these genes, some are also differentially expressed in heart tissues. Interestingly, the CpGs of interest are tagged to genes mainly involved in nervous and ionic processes. Given the close link between methylation and gene expression, these lists of CpGs promise to be not only good biomarkers, but also good indicators of key elements in the development of this pathology.