ENEIDA YURI SUDA

(Fonte: Lattes)
Índice h a partir de 2011
6
Projetos de Pesquisa
Unidades Organizacionais
LIM/54 - Laboratório de Bacteriologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 10 Citação(ões) na Scopus
    Recognition of Foot-Ankle Movement Patterns in Long-Distance Runners With Different Experience Levels Using Support Vector Machines
    (2020) SUDA, Eneida Yuri; WATARI, Ricky; MATIAS, Alessandra Bento; SACCO, Isabel C. N.
    Running practice could generate musculoskeletal adaptations that modify the body mechanics and generate different biomechanical patterns for individuals with distinct levels of experience. Therefore, the aim of this study was to investigate whether foot-ankle kinetic and kinematic patterns can be used to discriminate different levels of experience in running practice of recreational runners using a machine learning approach. Seventy-eight long-distance runners (40.7 +/- 7.0 years) were classified into less experienced (n= 24), moderately experienced (n= 23), or experienced (n= 31) runners using a fuzzy classification system, based on training frequency, volume, competitions and practice time. Three-dimensional kinematics of the foot-ankle and ground reaction forces (GRF) were acquired while the subjects ran on an instrumented treadmill at a self-selected speed (9.5-10.5 km/h). The foot-ankle kinematic and kinetic time series underwent a principal component analysis for data reduction, and combined with the discrete GRF variables to serve as inputs in a support vector machine (SVM), to determine if the groups could be distinguished between them in a one-vs.-all approach. The SVM models successfully classified all experience groups with significant crossvalidated accuracy rates and strong to very strong Matthew's correlation coefficients, based on features from the input data. Overall, foot mechanics was different according to running experience level. The main distinguishing kinematic factors for the less experienced group were a greater dorsiflexion of the first metatarsophalangeal joint and a larger plantarflexion angles between the calcaneus and metatarsals, whereas the experienced runners displayed the opposite pattern for the same joints. As for the moderately experienced runners, although they were successfully classified, they did not present a visually identifiable running pattern, and seem to be an intermediate group between the less and more experienced runners. The results of this study have the potential to assist the development of training programs targeting improvement in performance and rehabilitation protocols for preventing injuries.
  • article 2 Citação(ões) na Scopus
    Predictive Effect of Well-Known Risk Factors and Foot-Core Training in Lower Limb Running-Related Injuries in Recreational Runners: A Secondary Analysis of a Randomized Controlled Trial
    (2022) SUDA, Eneida Yuri; WATARI, Ricky; MATIAS, Alessandra B.; TADDEI, Ulisses T.; SACCO, Isabel C. N.
    Background: Running carries the risk of several types of running-related injuries (RRIs), especially in the lower limbs. The variety of risk factors and the lack of strong evidence for several of these injury risks hinder the ability to draw assertive conclusions about them, hampering the implementation of effective preventive strategies. Because the etiology of RRIs seems to be multifactorial, the presence of RRI risk factors might influence the outcome of therapeutic strategies in different ways. Thus, further investigations on how risk and protective factors influence the incidence and prevention of RRIs should be conducted. Purpose: To investigate the predictive effect of well-known risk factors and 1 protective factor-foot-core training-on the incidence of lower limb RRIs in recreational runners. Study Design: Cohort study; Level of evidence, 2. Methods: Middle- and long-distance recreational runners (N = 118) were assessed at baseline and randomly allocated to either an intervention group (n = 57) or a control group (n = 61). The intervention group underwent an 8-week (3 times/wk) foot-core training program. Participants were followed for a year after baseline assessment for the occurrence of RRIs. Logistic regression with backward elimination of variables was used to develop a model for prediction of RRI in recreational runners. Candidate predictor variables included age, sex, body mass index, years of running practice, number of races, training volume, training frequency, previous RRI, and the foot-core exercise training. Results: The final logistic regression model included 3 variables. As previously shown, the foot-core exercise program is a protective factor for RRIs (odds ratio, 0.40; 95% CI, 0.15-0.98). In addition, older age (odds ratio, 1.07; 95% CI, 1.00-1.14) and higher training volume (odds ratio, 1.02; 95% CI, 1.00-1.03) were risk factors for RRIs. Conclusion: The foot-core training was identified as a protective effect against lower limb RRI, which can be negatively influenced by older age and higher weekly training volume. The predictive model showed that RRIs should be considered a multivariate entity owing to the interaction among several factors. Registration: NCT02306148 (ClinicalTrials.gov identifier).
  • article 4 Citação(ões) na Scopus
    Effects of Foot-Core Training on Foot-Ankle Kinematics and Running Kinetics in Runners: Secondary Outcomes From a Randomized Controlled Trial
    (2022) MATIAS, Alessandra B.; WATARI, Ricky; TADDEI, Ulisses T.; CARAVAGGI, Paolo; INOUE, Rafael S.; THIBES, Raissa B.; SUDA, Eneida Y.; VIEIRA, Marcus F.; SACCO, Isabel C. N.
    This study investigated the effectiveness of an 8-week foot-core exercise training program on foot-ankle kinematics during running and also on running kinetics (impact loads), with particular interest in biomechanical outcomes considered risk factors for running-related injuries in recreational runners. A single-blind, randomized, controlled trial was conducted with 87 recreational runners randomly allocated to either the control (CG) or intervention (IG) group and assessed at baseline and after 8 weeks. The IG underwent foot-core training 3 times/week, while the CG followed a placebo lower-limb stretching protocol. The participants ran on a force-instrumented treadmill at a self-selected speed while foot-segment motion was captured simultaneously with kinetic measurements. After the intervention, there were statistically significant changed in foot biomechanics, such as: IG participants strike the ground with a more inverted calcaneus and a less dorsiflexed midfoot than those in the CG; at midstance, ran with a less plantarflexed and more adducted forefoot and a more abducted hallux; and at push-off, ran with a less dorsiflexed midfoot and a less adducted and more dorsiflexed hallux. The IG runners also had significantly decreased medial longitudinal arch excursion (p = 0.024) and increased rearfoot inversion (p = 0.037). The 8-week foot-core exercise program had no effect on impact (p = 0.129) and breaking forces (p = 0.934) or on vertical loading rate (p = 0.537), but it was positively effective in changing foot-ankle kinematic patterns.""
  • article 6 Citação(ões) na Scopus
    Subgroups of Foot-Ankle Movement Patterns Can Influence the Responsiveness to a Foot-Core Exercise Program: A Hierarchical Cluster Analysis
    (2021) WATARI, Ricky; SUDA, Eneida Y.; SANTOS, Joao P. S.; MATIAS, Alessandra B.; TADDEI, Ulisses T.; SACCO, Isabel C. N.
    The purpose of this study is to identify homogenous subgroups of foot-ankle (FA) kinematic patterns among recreational runners and further investigate whether differences in baseline movement patterns can influence the mechanical responses to a foot-core exercise intervention program. This is a secondary analysis of data from 85 participants of a randomized controlled trial (clinicaltrials.gov - NCT02306148) investigating the effects of an exercise-based therapeutic approach focused on FA complex. A validated skin marker-based multi-segment foot model was used to acquire kinematic data during the stance phase of treadmill running. Kinematic features were extracted from the time-series data using a principal component analysis, and the reduced data served as input for a hierarchical cluster analysis to identify subgroups of FA movement patterns. FA angle time series were compared between identified clusters and the mechanical effects of the foot-core exercise intervention was assessed for each subgroup. Two clusters of FA running patterns were identified, with cluster 1 (n = 36) presenting a pattern of forefoot abduction, while cluster 2 (n = 49) displayed deviations in the proximal segments, with a rearfoot adduction and midfoot abduction throughout the stance phase of running. Data from 29 runners who completed the intervention protocol were analyzed after 8-weeks of foot-core exercises, resulting in changes mainly in cluster 1 (n = 16) in the transverse plane, in which we observed a reduction in the forefoot abduction, an increase in the rearfoot adduction and an approximation of their pattern to the runners in cluster 2 (n = 13). The findings of this study may help guide individual-centered treatment strategies, taking into account their initial mechanical patterns.