MICHELLE BUSCARILLI DE MORAES

(Fonte: Lattes)
Índice h a partir de 2011
8
Projetos de Pesquisa
Unidades Organizacionais

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 169 Citação(ões) na Scopus
    Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome
    (2015) YAMAMOTO, Guilherme Lopes; AGUENA, Meire; GOS, Monika; HUNG, Christina; PILCH, Jacek; FAHIMINIYA, Somayyeh; ABRAMOWICZ, Anna; CRISTIAN, Ingrid; BUSCARILLI, Michelle; NASLAVSKY, Michel Satya; MALAQUIAS, Alexsandra C.; ZATZ, Mayana; BODAMER, Olaf; MAJEWSKI, Jacek; JORGE, Alexander A. L.; PEREIRA, Alexandre C.; KIM, Chong Ae; PASSOS-BUENO, Maria Rita; BERTOLA, Debora Romeo
    Background Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. Methods A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. Results We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. Conclusions We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome.
  • article 22 Citação(ões) na Scopus
    Phenotypic spectrum of Costello syndrome individuals harboring the rare HRAS mutation p.Gly13Asp
    (2017) BERTOLA, Debora; BUSCARILLI, Michelle; STABLEY, Deborah L.; BAKER, Laura; DOYLE, Daniel; BARTHOLOMEW, Dennis W.; SOL-CHURCH, Katia; GRIPP, Karen W.
    Costello syndrome is part of the RASopathies, a group of neurocardiofaciocutaneous syndromes caused by deregulation of the RAS mitogen-activated protein kinase pathway. Heterozygous mutations in HRAS are responsible for Costello syndrome, with more than 80% of the patients harboring the specific p.Gly12Ser variant. These individuals show a homogeneous phenotype. The clinical characteristics of the Costello syndrome individuals harboring rarer HRAS mutations are less understood, due to the small number of reported cases. Here, we describe the phenotypic spectrum of five additional individuals with HRAS c.38G>A; p.Gly13Asp, including one with somatic mosaicism, and review five previously described cases. The facial and hair abnormalities of the HRAS p.Gly13Asp individuals differ from the typical pattern observed in those showing the common HRAS (p.Gly12Ser) mutation, with less coarse facial features and slow growing, sparse hair with abnormal texture, the latter resembling the pattern observed in Noonan syndrome-like disorder with loose anagen hair and individuals harboring another amino acid substitution in HRAS (p.Gly13Cys). Although some individuals with HRAS p.Gly13Asp developed papillomata and vascular proliferation lesions, no malignant tumors occurred, similar to what was reported for individuals harboring the HRAS p.Gly13Cys. The fact that no malignant tumors were described in these individuals does not allow definitive conclusions about the risk for cancer development. It remains to be determined if substitutions of amino acid 13 in HRAS (p.Gly13Asp and p.Gly13Cys) increase the risk of tumor development.