CARLOS ALBERTO BUCHPIGUEL

(Fonte: Lattes)
Índice h a partir de 2011
28
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Radiologia, Faculdade de Medicina - Docente
LIM/43 - Laboratório de Medicina Nuclear, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 9 Citação(ões) na Scopus
    The link between cardiovascular risk, Alzheimer's disease, and mild cognitive impairment: support from recent functional neuroimaging studies
    (2014) FERREIRA, Luiz K.; TAMASHIRO-DURAN, Jaqueline H.; SQUARZONI, Paula; DURAN, Fabio L.; ALVES, Tania C.; BUCHPIGUEL, Carlos A.; BUSATTO, Geraldo F.
    Objective: To review functional neuroimaging studies about the relationship between cardiovascular risk factors (CVRFs), Alzheimer's disease (AD), and mild cognitive impairment (MCI). Methods: We performed a comprehensive literature search to identify articles in the neuroimaging field addressing CVRF in AD and MCI. We included studies that used positron emission tomography (PET), single photon emission computerized tomography (SPECT), or functional magnetic resonance imaging (fMRI). Results: CVRFs have been considered risk factors for cognitive decline, MCI, and AD. Patterns of AD-like changes in brain function have been found in association with several CVRFs (both regarding individual risk factors and also composite CVRF measures). In vivo assessment of AD-related pathology with amyloid imaging techniques provided further evidence linking CVRFs and AD, but there is still limited information resulting from this new technology. Conclusion: There is a large body of evidence from functional neuroimaging studies supporting the hypothesis that CVRFs may play a causal role in the pathophysiology of AD. A major limitation of most studies is their cross-sectional design; future longitudinal studies using multiple imaging modalities are expected to better document changes in CVRF-related brain function patterns and provide a clearer picture of the complex relationship between aging, CVRFs, and AD.
  • article 6 Citação(ões) na Scopus
    Positron emission tomography/magnetic resonance imaging (PET/MRI): An update and initial experience at HC-FMUSP
    (2018) QUEIROZ, Marcelo A.; BARBOSA, Felipe de Galiza; BUCHPIGUEL, Carlos Alberto; CERRI, Giovanni Guido
    The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.
  • article 20 Citação(ões) na Scopus
    Clinical perspectives of PSMA PET/MRI for prostate cancer
    (2018) BARBOSA, Felipe de Galiza; QUEIROZ, Marcelo Araujo; NUNES, Rafael Fernandes; MARIN, Jose Flavio Gomes; BUCHPIGUEL, Carlos Alberto; CERRI, Giovanni Guido
    Prostate cancer imaging has become an important diagnostic modality for tumor evaluation. Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) has been extensively studied, and the results are robust and promising. The advent of the PET/magnetic resonance imaging (MRI) has added morphofunctional information from the standard of reference MRI to highly accurate molecular information from PET. Different PSMA ligands have been used for this purpose including (68)gallium and (18)fluorine-labeled PET probes, which have particular features including spatial resolution, imaging quality and tracer biodistribution. The use of PSMA PET imaging is well established for evaluating biochemical recurrence, even at low prostate-specific antigen (PSA) levels, but has also shown interesting applications for tumor detection, primary staging, assessment of therapeutic responses and treatment planning. This review will outline the potential role of PSMA PET/MRI for the clinical assessment of PCa.
  • article 25 Citação(ões) na Scopus
    PET imaging in multiple sclerosis
    (2014) FARIA, Daniele de Paula; COPRAY, Sjef; BUCHPIGUEL, Carlos; DIERCKX, Rudi; VRIES, Erik de
    Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus can be applied to detect and monitor different aspects of diseases. The number of applications of PET imaging in multiple sclerosis is still limited. Clinical studies using PET are basically focused on monitoring changes in glucose metabolism and the presence of activated microglia/macrophages in sclerotic lesions. In preclinical studies, PET imaging of targets for other processes, like demyelination and remyelination, has been investigated and may soon be translated to clinical applications. Moreover, more PET tracers that could be relevant for MS are available now, but have not been studied in this context yet. In this review, we summarize the PET imaging studies performed in multiple sclerosis up to now. In addition, we will identify potential applications of PET imaging of processes or targets that are of interest to MS research, but have yet remained largely unexplored.