RODRIGO MACHADO VIEIRA

(Fonte: Lattes)
Índice h a partir de 2011
37
Projetos de Pesquisa
Unidades Organizacionais
LIM/27 - Laboratório de Neurociências, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 10 de 28
  • article 33 Citação(ões) na Scopus
    Increased Brain Lactate During Depressive Episodes and Reversal Effects by Lithium Monotherapy in Drug-Naive Bipolar Disorder A 3-T H-1-MRS Study
    (2017) MACHADO-VIEIRA, Rodrigo; ZANETTI, Marcus V.; OTADUY, Maria C.; SOUSA, Rafael T. De; SOEIRO-DE-SOUZA, Marcio G.; COSTA, Alana C.; CARVALHO, Andre F.; LEITE, Claudia C.; BUSATTO, Geraldo F.; ZARATE JR., Carlos A.; GATTAZ, Wagner F.
    Objective: Mitochondrial dysfunction and energy metabolism impairment are key components in the pathophysiology of bipolar disorder (BD) and may involve a shift from aerobic to anaerobic metabolism. Measurement of brain lactate in vivo using protonmagnetic resonance spectroscopy (H-1-MRS) represents an important tool to evaluate mitochondrial and metabolic dysfunction during mood episodes, as well as to monitor treatment response. To date, very few studies have quantified brain lactate in BD. In addition, no study has longitudinally evaluated lactate using H-1-MRS during depressive episodes or its association with mood stabilizer therapy. This study aimed to evaluate cingulate cortex (CC) lactate using 3-T H-1-MRS during acute depressive episodes in BD and the possible effects induced by lithium monotherapy. Methods: Twenty medication-free outpatients with short length of BD (80% drug-naive) in a current major depressive episode were matched with control subjects. Patients were treated for 6 weeks with lithium monotherapy at therapeutic doses in an open-label trial (blood level, 0.48 +/- 0.19 mmol/L). Cingulate cortex lactate was measured before (week 0) and after lithium therapy (week 6) using H-1-MRS. Antidepressant efficacy was assessed with the 21-item Hamilton Depression Rating Scale as the primary outcome. Results: Subjects with BD depression showed a significantly higher CC lactate in comparison to control subjects. Furthermore, a significant decrease in CC lactate was observed after 6 weeks of lithium treatment compared with baseline (P = 0.002). CC Lactate levels was associated with family history of mood disorders and plasma lithium levels. Conclusions: This is the first report of increased CC lactate in patients with bipolar depression and lower levels after lithium monotherapy for 6 weeks. These findings indicate a shift to anaerobic metabolism and a role for lactate as a state marker during mood episodes. Energy and redox dysfunction may represent key targets for lithium's therapeutic actions.
  • article 39 Citação(ões) na Scopus
    Bcl-2 rs956572 Polymorphism is Associated with Increased Anterior Cingulate Cortical Glutamate in Euthymic Bipolar I Disorder
    (2013) SOEIRO-DE-SOUZA, Marcio Gerhardt; SALVADORE, Giacomo; MORENO, Ricardo Alberto; OTADUY, Maria Concepcion Garcia; CHAIM, Kalil T.; GATTAZ, Wagner F.; ZARATE JR., Carlos A.; MACHADO-VIEIRA, Rodrigo
    B-cell lymphoma 2 (Bcl-2) is an important regulator of cellular plasticity and resilience. In bipolar disorder (BD), studies have shown a key role for a Bcl-2 gene single-nucleotide polymorphism (SNP) rs956572 in the regulation of intracellular calcium (Ca2+) dynamics, Bcl-2 expression/levels, and vulnerability to cellular apoptosis. At the same time, Bcl-2 decreases glutamate (Glu) toxicity in neural cells. Abnormalities in Glu function have been implicated in BD. In magnetic resonance spectroscopy (MRS) studies, anterior cingulated cortex (ACC) Glu levels have been reported to be increased in bipolar depression and mania, but no study specifically evaluated ACC Glu levels in BD-euthymia. Here, we compared ACC Glu levels in BD-euthymia compared with healthy subjects using H-1-MRS and also evaluated the selective role of the rs956572 Bcl-2 SNP in modulating ACC Glu and Glx (sum of Glu and glutamine) in euthymic-BD. Forty euthymic subjects with BD type 1 and forty healthy controls aged 18-40 were evaluated. All participants were genotyped for Bcl-2 rs956572 and underwent a 3-Tesla brain magnetic resonance imaging examination including the acquisition of an in vivo PRESS single voxel (2 cm(3)) H-1-MRS sequence to obtain metabolite levels from the ACC. Euthymic-BD subjects had higher Glu/Cre (creatine) and Glx/Cre compared with healthy controls. The Bcl-2 SNP AA genotype was associated with elevated ACC Glu/Cre and Glx/Cre ratio in the BD group but not in controls. The present study reports for the first time an increase in ACC Glu/Cre and Glx/Cre ratios in BD-euthymia. Also, Bcl-2 AA genotype, previously associated with lower Bcl-2 expression and increase intracellular Ca2+, showed to be associated with increased ACC Glu and Glx levels in euthymic-BD subjects. The present findings reinforce a key role for glutamatergic system dysfunction in the pathophysiology of BD, potentially involving modulatory effects by Bcl-2 in the ACC. Neuropsychopharmacology (2013) 38, 468-475; doi:10.1038/npp.2012.203; published online 17 October 2012
  • article 34 Citação(ões) na Scopus
    Genetic Studies on the Tripartite Glutamate Synapse in the Pathophysiology and Therapeutics of Mood Disorders
    (2017) SOUSA, Rafael T. de; LOCH, Alexandre A.; CARVALHO, Andre F.; BRUNONI, Andre R.; HADDAD, Marie Reine; HENTER, Ioline D.; ZARATE JR., Carlos A.; MACHADO-VIEIRA, Rodrigo
    Both bipolar disorder (BD) and major depressive disorder (MDD) have high morbidity and share a genetic background. Treatment options for these mood disorders are currently suboptimal for many patients; however, specific genetic variables may be involved in both pathophysiology and response to treatment. Agents such as the glutamatergic modulator ketamine are effective in treatment-resistant mood disorders, underscoring the potential importance of the glutamatergic system as a target for improved therapeutics. Here we review genetic studies linking the glutamatergic system to the pathophysiology and therapeutics of mood disorders. We screened 763 original genetic studies of BD or MDD that investigated genes encoding targets of the pathway/mediators related to the so-called tripartite glutamate synapse, including pre- and post-synaptic neurons and glial cells; 60 papers were included in this review. The findings suggest the involvement of glutamate-related genes in risk for mood disorders, treatment response, and phenotypic characteristics, although there was no consistent evidence for a specific gene. Target genes of high interest included GRIA3 and GRIK2 (which likely play a role in emergent suicidal ideation after antidepressant treatment), GRIK4 (which may influence treatment response), and GRM7 (which potentially affects risk for mood disorders). There was stronger evidence that glutamate-related genes influence risk for BD compared with MDD. Taken together, the studies show a preliminary relationship between glutamate-related genes and risk for mood disorders, suicide, and treatment response, particularly with regard to targets on metabotropic and ionotropic receptors.
  • article 112 Citação(ões) na Scopus
    Does Lithium Prevent Alzheimer's Disease?
    (2012) FORLENZA, Orestes V.; PAULA, Vanessa J. de; MACHADO-VIEIRA, Rodrigo; DINIZ, Breno S.; GATTAZ, Wagner F.
    Lithium salts have a well-established role in the treatment of major affective disorders. More recently, experimental and clinical studies have provided evidence that lithium may also exert neuroprotective effects. In animal and cell culture models, lithium has been shown to increase neuronal viability through a combination of mechanisms that includes the inhibition of apoptosis, regulation of autophagy, increased mitochondrial function, and synthesis of neurotrophic factors. In humans, lithium treatment has been associated with humoral and structural evidence of neuroprotection, such as increased expression of anti-apoptotic genes, inhibition of cellular oxidative stress, synthesis of brain-derived neurotrophic factor (BDNF), cortical thickening, increased grey matter density, and hippocampal enlargement. Recent studies addressing the inhibition of glycogen synthase kinase-3 beta (GSK3B) by lithium have further suggested the modification of biological cascades that pertain to the pathophysiology of Alzheimer's disease (AD). A recent placebo-controlled clinical trial in patients with amnestic mild cognitive impairment (MCI) showed that long-term lithium treatment may actually slow the progression of cognitive and functional deficits, and also attenuate Tau hyperphosphorylation in the MCI-AD continuum. Therefore, lithium treatment may yield disease-modifying effects in AD, both by the specific modification of its pathophysiology via inhibition of overactive GSK3B, and by the unspecific provision of neurotrophic and neuroprotective support. Although the clinical evidence available so far is promising, further experimentation and replication of the evidence in large scale clinical trials is still required to assess the benefit of lithium in the treatment or prevention of cognitive decline in the elderly.
  • article 75 Citação(ões) na Scopus
    An investigation of amino-acid neurotransmitters as potential predictors of clinical improvement to ketamine in depression
    (2012) SALVADORE, Giacomo; VAN DER VEEN, Jan Willem; ZHANG, Yan; MARENCO, Stefano; MACHADO-VIEIRA, Rodrigo; BAUMANN, Jacqueline; IBRAHIM, Lobna A.; LUCKENBAUGH, David A.; SHEN, Jun; DREVETS, Wayne C.; ZARATE, Carlos A., Jr.
    Amino-acid neurotransmitter system dysfunction plays a major role in the pathophysiology of major depressive disorder (MDD). We used proton magnetic resonance spectroscopy (H-1-MRS) to investigate whether prefrontal levels of amino-acid neurotransmitters predict antidepressant response to a single intravenous infusion of the N-methyl-D-aspartate (NMDA) antagonist ketamine in MDD patients. Fourteen drug-free patients with MDD were scanned 1-3 d before receiving a single intravenous infusion of ketamine (0.5 mg/kg). We measured gamma aminobutyric acid (GABA), glutamate, and Glx/glutamate ratio (a surrogate marker of glutamine) in the ventromedial prefrontal cortex (VM-PFC) and the dorsomedial/dorsal anterolateral prefrontal cortex (DM/DA-PFC). Correlation analyses were conducted to determine whether pretreatment GABA, glutamate, or Glx/glutamate ratio predicted change in depressive and anxiety symptoms 230 min after ketamine administration. Pretreatment GABA or glutamate did not correlate with improved depressive symptoms in either of the two regions of interest (p > 0.1); pretreatment Glx/glutamate ratio in the DM/DA-PFC was negatively correlated with improvement in depressive symptoms [r(s)(11) = -0.57, p < 0.05]. Pretreatment glutamate levels in the VM-PFC were positively correlated with improvement in anxiety symptoms [r(s)(11) = 0.57, p < 0.05]. The findings suggest an association between lower Glx/glutamate ratio and greater improvement in response to ketamine treatment. Because glutamine is mainly contained in glia, the decreased Glx/glutamate ratio observed in this study may reflect the reduction in glial cells found in the same regions in post-mortem studies of individuals with MDD, and suggests that the presence of this neuropathological construct may be associated with antidepressant responsiveness to ketamine.
  • article 89 Citação(ões) na Scopus
    Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics
    (2015) ORTIZ, Robin; ULRICH, Henning; ZARATE JR., Carlos A.; MACHADO-VIEIRA, Rodrigo
    Uric acid and purines (such as adenosine) regulate mood, sleep, activity, appetite, cognition, memory, convulsive threshold, social interaction, drive, and impulsivity. A link between purinergic dysfunction and mood disorders was first proposed a century ago. Interestingly, a recent nationwide population-based study showed elevated risk of gout in subjects with bipolar disorder (BD), and a recent meta-analysis and systematic review of placebo-controlled trials of adjuvant purinergic modulators confirmed their benefits in bipolar mania. Uric acid may modulate energy and activity levels, with higher levels associated with higher energy and BD spectrum. Several recent genetic studies suggest that the purinergic system - particularly the modulation of P1 and P2 receptor subtypes - plays a role in mood disorders, lending credence to this model. Nucleotide concentrations can be measured using brain spectroscopy, and ligands for in vivo positron emission tomography (PET) imaging of adenosine (P1) receptors have been developed, thus allowing potential target engagement studies. This review discusses the key role of the purinergic systemin the pathophysiology of mood disorders. Focusing on this promising therapeutic target may lead to the development of therapies with antidepressant, mood stabilization, and cognitive effects.
  • article 30 Citação(ões) na Scopus
    Elevated neurotrophin-3 and neurotrophin 4/5 levels in unmedicated bipolar depression and the effects of lithium
    (2015) LOCH, Alexandre A.; ZANETTI, Marcus V.; SOUSA, Rafael T. de; CHAIM, Tiffany M.; SERPA, Mauricio H.; GATTAZ, Wagner F.; TEIXEIRA, Antonio L.; MACHADO-VIEIRA, Rodrigo
    Background: Bipolar disorder (BD) has been associated with diverse abnormalities in neural plasticity and cellular resilience. Neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) support synaptic neuronal survival and differentiation. NT-3 and NT-4/5 levels were found to be altered in BD, potentially representing a physiological response against cellular stress. However, the use of psychopharmacological agents and heterogeneous mood states may constitute important biases in such studies. Thus, we aimed to assess NT-3 and NT-4/5 levels in medication-free BD type I or II individuals in a current depressive episode, before and after 6weeks of lithium monotherapy and matched with healthy controls. Methods: Twenty-three patients with BD type I or II during a depressive episode and 28 healthy controls were studied. Patients were required to have a 21-item Hamilton Depression Rating Scale score >= 18 and had not undergone any psychopharmacological treatment for at least 6 weeks prior to study entry. Patients were treated with lithium for 6 weeks and plasma NT-3 and NT-4/5 levels were determined at baseline and end point using ELISA method. Results: Baseline plasma levels of both NT-3 and NT-4/5 were significantly increased in acutely depressed BD subjects in comparison to healthy controls (p = 0.040 and 0.039, respectively). The NT-3 and NT-4/5 levels did not significantly change after lithium treatment. NT-3 and NT-4/5 levels were positively correlated to illness duration in BD (p = 0.032 and 0.034, respectively). Conclusion: Our findings suggest that NT-3 and NT-4/5 levels are increased in the depressive phase of BD, which seems directly associated with illness duration. The increased levels of NT-3 and NT-4/5 may underlie a biological response to cellular stress associated with the course of BD.
  • article 28 Citação(ões) na Scopus
    Bimodal Effect of Lithium Plasma Levels on Hippocampal Glutamate Concentrations in Bipolar II Depression: A Pilot Study
    (2015) ZANETTI, Marcus V.; OTADUY, Maria C.; SOUSA, Rafael T. de; GATTAZ, Wagner F.; BUSATTO, Geraldo F.; LEITE, Claudia C.; MACHADO-VIEIRA, Rodrigo
    Background: The hippocampus has been highly implicated in the pathophysiology of bipolar disorder (BD). Nevertheless, no study has longitudinally evaluated hippocampal metabolite levels in bipolar depression under treatment with lithium. Methods: Nineteen medication-free BD patients (78.9% treatment-naive and 73.7% with BD type II) presenting an acute depressive episode and 17 healthy controls were studied. Patients were treated for 6 weeks with lithium in an open-label trial. N-acetyl aspartate (NAA), creatine, choline, myo-Inositol, and glutamate levels were assessed in the left hippocampus before (week 0) and after (week 6) lithium treatment using 3T proton magnetic resonance spectroscopy (1H-MRS). The metabolite concentrations were estimated using internal water as reference and voxel segmentation for partial volume correction. Results: At baseline, acutely depressed BD patients and healthy controls exhibited similar hippocampal metabolites concentrations, with no changes after 6 weeks of lithium monotherapy. A significant correlation between antidepressant efficacy and increases in NAA concentration over time was observed. Also, there was a significant positive correlation between the changes in glutamate concentrations over follow-up and plasma lithium levels at endpoint. Mixed effects model analysis revealed a bimodal effect of lithium plasma levels in hippocampal glutamate concentrations: levels of 0.2 to 0.49 mmol/L (n=9) were associated with a decrease in glutamate concentrations, whereas the subgroup of BD subjects with ""standard"" lithium levels (>= 0.50 mmol/L; n = 10) showed an overall increase in glutamate concentrations over time. Conclusions: These preliminary results suggest that lithium has a bimodal action in hippocampal glutamate concentration depending on the plasma levels.
  • article 66 Citação(ões) na Scopus
    Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder
    (2015) MACHADO-VIEIRA, Rodrigo; ZANETTI, Marcus V.; TEIXEIRA, Antonio L.; UNO, Miyuki; VALIENGO, Leandro L.; SOEIRO-DE-SOUZA, Marcio G.; OBA-SHINJO, Sueli M.; SOUSA, Rafael T. de; ZARATE JR., Carlos. A.; GATTAZ, Wagner F.; MARIE, Suety K. N.
    Strong evidence implicates intracellular signaling cascades dysfunction in the pathophysiology of Bipolar Disorder (BD). Regulation of AKT/mTOR pathway is a critical signaling pathway in synaptic neurotransmission and plasticity, also modulating cell proliferation and migration. Gene expression of the AKT/mTOR pathway was assessed in 25 BD (DSM-IV-TR criteria) unmedicated depressed individuals at baseline and after 6 weeks of lithium therapy and 31 matched healthy controls. Decreases in blood AKT/ and mTOR mRNA expression, as well as in BAD/BCL-2 expression ratio were observed in short-term BD patients during depressive episodes in comparison to healthy controls. There was no significant change in the expression of AKT1, mTOR, BCL-2, BAD and NDUFA6 after lithium therapy in the total group of BD subjects. However, the changes in AKT1 expression after lithium treatment were positively correlated with depression improvement. An integrated activity within this pathway was observed at both baseline and post-treatment. The present results support an integrated AKT/mTOR signaling pathway activity in a similar fashion to the described in previous human postmortem and rodents brain studies. Overall, the results reinforce a role for AKT1 and mTOR in the pathophysiology of BD and support the relevance of blood mRNA expression as a valid surrogate biological source to study brain intracellular signaling cascades changes and convergent molecular pathways in psychiatric disorders.
  • article 73 Citação(ões) na Scopus
    Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder
    (2013) SOEIRO-DE-SOUZA, Marcio Gerhardt; ANDREAZZA, Ana C.; CARVALHO, Andre F.; MACHADO-VIEIRA, Rodrigo; YOUNG, L. Trevor; MORENO, Ricardo Alberto
    Bipolar disorder (BD) is a major public health problem characterized by progressive functional impairment. A number of clinical variables have been associated with progression of the disease, most notably number of affective episodes and presence of psychotic symptoms, both of which correlate with greater cognitive impairment, lower response rates for lithium, and possibly lower levels of neurotrophic factors. Oxidative damage to cytosine and guanosine (8-OHdG) has been described as a modulator of DNA methylation, but the extent of DNA oxidative damage involvement in BD remains unclear. The aim of this study was to evaluate the extent of DNA oxidative damage to 8-OHdG and 5-methylcytosine (5-HMec), as well as global methylation (5-Mec), in BD patients and healthy controls. Potential association with clinical variables was also investigated. DNA levels of 8-OHdG, 5-HMec and 5-Mec were measured in 50 BD type I patients and 50 healthy controls. DNA 8-OHdG levels were higher in BD patients compared to healthy controls and found to be positively influenced by number of previous manic episodes. BD subjects had lower levels of 5-HMec compared to controls, whereas this measure was not influenced by the clinical features of BD. Number of manic episodes was correlated with higher levels of 8-OHdG, but not of 5-Mec or 5-HMec. Lower demethylation activity (5-HMec) but no difference in global 5-Mec levels was observed in BD. This finding suggests that oxidative damage to 8-OHdG might be a potential marker of disease progression, although further prospective cross-sectional studies to confirm neuroprogression in BD are warranted.