ANGELA BATISTA GOMES DOS SANTOS

Índice h a partir de 2011
10
Projetos de Pesquisa
Unidades Organizacionais
LIM/59 - Laboratório de Biologia Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 66 Citação(ões) na Scopus
    Anti-inflammatory Effects of Aerobic Exercise in Mice Exposed to Air Pollution
    (2012) VIEIRA, Rodolfo de Paula; TOLEDO, Alessandra Choqueta; SILVA, Lucas Bogaz; ALMEIDA, Francine Maria; DAMACENO-RODRIGUES, Nilsa Regina; CALDINI, Elia Garcia; SANTOS, Angela Batista Gomes; RIVERO, Dolores Helena; HIZUME, Deborah Camargo; LOPES, Fernanda Degobbi Tenorio Quirino Santos; OLIVO, Clarice Rosa; CASTRO-FARIA-NETO, Hugo Caire; MARTINS, Milton Arruda; SALDIVA, Paulo Hilario Nascimento; DOLHNIKOFF, Marisa
    Purpose: Exposure to diesel exhaust particles (DEP) results in lung inflammation. Regular aerobic exercise improves the inflammatory status in different pulmonary diseases. However, the effects of long-term aerobic exercise on the pulmonary response to DEP have not been investigated. The present study evaluated the effect of aerobic conditioning on the pulmonary inflammatory and oxidative responses of mice exposed to DEP. Methods: BALB/c mice were subjected to aerobic exercise five times per week for 5 wk, concomitantly with exposure to DEP (3 mg.mL (1); 10 mu L per mouse). The levels of exhaled nitric oxide, reactive oxygen species, cellularity, interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) were analyzed in bronchoalveolar lavage fluid, and the density of neutrophils and the volume proportion of collagen fibers were measured in the lung parenchyma. The cellular density of leukocytes expressing IL-1 beta, keratinocyte chemoattractant (KC), and TNF-alpha in lung parenchyma was evaluated with immunohistochemistry. The levels of IL-1 beta, KC, and TNF-alpha were also evaluated in the serum. Results: Aerobic exercise inhibited the DEP-induced increase in the levels of reactive oxygen species (P < 0.05); exhaled nitric oxide (P < 0.01); total (P < 0.01) and differential cells (P < 0.01); IL-6 and TNF-alpha levels in bronchoalveolar lavage fluid (P < 0.05); the level of neutrophils (P < 0.001); collagen density in the lung parenchyma (P < 0.05); the levels of IL-6, KC, and TNF-alpha in plasma (P < 0.05); and the expression of IL-1 beta, KC, and TNF-alpha by leukocytes in the lung parenchyma (P < 0.01). Conclusions: We conclude that long-term aerobic exercise presents protective effects in a mouse model of DEP-induced lung inflammation. Our results indicate a need for human studies that evaluate the pulmonary responses to aerobic exercise chronically performed in polluted areas.
  • article 51 Citação(ões) na Scopus
    Airway epithelium mediates the anti-inflammatory effects of exercise on asthma
    (2011) VIEIRA, Rodolfo Paula; TOLEDO, Alessandra Choqueta de; FERREIRA, Sergio Cesar; SANTOS, Angela Batista Gomes dos; MEDEIROS, Maria Cristina Rodrigues; HAGE, Marcia; MAUAD, Thais; MARTINS, Milton de Arruda; DOLHNIKOFF, Marisa; CARVALHO, Celso Ricardo Fernandes de
    Airway epithelium plays an important role in the asthma physiopathology. Aerobic exercise decreases Th2 response in murine models of allergic asthma, but its effects on the structure and activation of airway epithelium in asthma are unknown. BALB/c mice were divided into control, aerobic exercise, ovalbumin-sensitized and ovalbumin-sensitized plus aerobic exercise groups. Ovalbumin sensitization occurred on days 0, 14, 28, 42, and aerosol challenge from day 21 to day 50. Aerobic exercise started on day 22 and ended on day 50. Total cells and eosinophils were reduced in ovalbumin-sensitized group submitted to aerobic exercise. Aerobic exercise also reduced the oxidative and nitrosative stress and the epithelial expression of Th2 cytokines, chemokines, adhesion molecules, growth factors and NF-kB and P2X7 receptor. Additionally, aerobic exercise increased the epithelial expression of IL-10 in non-sensitized and sensitized animals. These findings contribute to the understanding of the beneficial effects of aerobic exercise for chronic allergic airway inflammation, suggesting an immune-regulatory role of exercise on airway epithelium.
  • article 25 Citação(ões) na Scopus
    A comparative study of extracellular matrix remodeling in two murine models of emphysema
    (2013) LOPES, F. D. T. Q. S.; TOLEDO, A. C.; OLIVO, C. R.; PRADO, C. M.; LEICK, E. A.; MEDEIROS, M. C.; SANTOS, A. B. G.; GARIPPO, A.; MARTINS, M. A.; MAUAD, T.
    A single instillation of porcine pancreatic elastase (PPE) results in significant airspace enlargement on the 28th day after instillation, whereas cigarette smoke (CS) exposure requires 6 months to produce mild emphysema in rodents. Considering that there are differences in the pathogenesis of parenchymal destruction in these different experimental models, it is likely that there may be different patterns of extracellular matrix (ECM) remodeling. To evaluate ECM remodeling, C57BL/6 mice were submitted to either a nasal drop of PPE (PPE 28 Days) or exposed for 6 months to cigarette smoke (CS 6 months). Control groups received either an intranasal instillation of saline solution (Saline 28 Days) or remained without any smoke inhalation for six months (Control 6 months). We measured the mean linear intercept and the volume proportion of collagen type I, collagen type III, elastin and fibrillin. We used emission-scanning confocal microscopy to verify the fiber distribution. Both models induced increased mean linear intercept in relation to the respective controls, being larger in the elastase model in relation to the CS model. In the CS model, emphysema was associated with an increase in the volume proportion of fibrillin, whereas in the PPE model there was an increase in the parenchymal elastin content. In both models, there was an increase in collagen type III, which was higher in the CS-exposed mice. We concluded that ECM remodeling is different in the two most used experimental models of emphysema.