MONICA MALHEIROS FRANCA

(Fonte: Lattes)
Índice h a partir de 2011
8
Projetos de Pesquisa
Unidades Organizacionais
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • article 26 Citação(ões) na Scopus
    Screening of targeted panel genes in Brazilian patients with primary ovarian insufficiency
    (2020) FRANCA, Monica M.; FUNARI, Mariana F. A.; LERARIO, Antonio M.; SANTOS, Mariza G.; NISHI, Mirian Y.; DOMENICE, Sorahia; MORAES, Daniela R.; COSTALONGA, Everlayny F.; MACIEL, Gustavo A. R.; MACIEL-GUERRA, Andrea T.; GUERRA-JUNIOR, Gil; MENDONCA, Berenice B.
    Primary ovarian insufficiency (POI) is a heterogeneous disorder associated with several genes. The majority of cases are still unsolved. Our aim was to identify the molecular diagnosis of a Brazilian cohort with POI. Genetic analysis was performed using a customized panel of targeted massively parallel sequencing (TMPS) and the candidate variants were confirmed by Sanger sequencing. Additional copy number variation (CNV) analysis of TMPS samples was performed by CONTRA. Fifty women with POI (29 primary amenorrhea and 21 secondary amenorrhea) of unknown molecular diagnosis were included in this study, which was conducted in a tertiary referral center of clinical endocrinology. A genetic defect was obtained in 70% women with POI using the customized TMPS panel. Twenty-four pathogenic variants and two CNVs were found in 48% of POI women. Of these variants, 16 genes were identified as BMP8B, CPEB1, INSL3, MCM9, GDF9, UBR2, ATM, STAG3, BMP15, BMPR2, DAZL, PRDM1, FSHR, EIF4ENIF1, NOBOX, and GATA4. Moreover, a microdeletion and microduplication in the CPEB1 and SYCE1 genes, respectively, were also identified in two distinct patients. The genetic analysis of eleven patients was classified as variants of uncertain clinical significance whereas this group of patients harbored at least two variants in different genes. Thirteen patients had benign or no rare variants, and therefore the genetic etiology remained unclear. In conclusion, next-generation sequencing (NGS) is a highly effective approach to identify the genetic diagnoses of heterogenous disorders, such as POI. A molecular etiology allowed us to improve the disease knowledge, guide decisions about prevention or treatment, and allow familial counseling avoiding future comorbidities.
  • article 59 Citação(ões) na Scopus
    High Frequency of MKRN3 Mutations in Male Central Precocious Puberty Previously Classified as Idiopathic
    (2017) BESSA, Danielle S.; MACEDO, Delanie B.; BRITO, Vinicius N.; FRANCA, Monica M.; MONTENEGRO, Luciana R.; CUNHA-SILVA, Marina; SILVEIRA, Leticia G.; HUMMEL, Tiago; BERGADA, Ignacio; BRASLAVSKY, Debora; ABREU, Ana Paula; DAUBER, Andrew; MENDONCA, Berenice B.; KAISER, Ursula B.; LATRONICO, Ana Claudia
    Background/Aims: Recently, loss-of-function mutations in the MKRN3 gene have been implicated in the etiology of familial central precocious puberty (CPP) in both sexes. We aimed to analyze the frequency of MKRN3 mutations in boys with CPP and to compare the clinical and hormonal features of boys with and without MKRN3 mutations. Methods: This was a retrospective review of clinical, hormonal and genetic features of 20 male patients with idiopathic CPP evaluated at an academic medical center. The entire coding regions of MKRN3, KISS1 and KISS1R genes were sequenced. Results: We studied 20 boys from 17 families with CPP. All of them had normal brain magnetic resonance imaging. Eight boys from 5 families harbored four distinct heterozygous MKRN3 mutations predicted to be deleterious for protein function, p.Ala162Glyfs*14, p.Arg213Glyfs*73, p.Arg328Cys and p. Arg365Ser. One boy carried a previously described KISS1-activating mutation (p.Pro74Ser). The frequency of MKRN3 mutations among these boys with idiopathic CPP was significantly higher than previously reported female data (40 vs. 6.4%, respectively, p < 0.001). Boys with MKRN3 mutations had typical clinical and hormonal features of CPP. Notably, they had later pubertal onset than boys without MKRN3 abnormalities (median age 8.2 vs. 7.0 years, respectively, p = 0.033). Conclusion: We demonstrated a high frequency of MKRN3 mutations in boys with CPP, previously classified as idiopathic, suggesting the importance of genetic analysis in this group. The boys with CPP due to MKRN3 mutations had classical features of CPP, but with puberty initiation at a borderline age. (C) 2016 S. Karger AG, Basel
  • article 25 Citação(ões) na Scopus
    Exome Sequencing Reveals the POLR3H Gene as a Novel Cause of Primary Ovarian Insufficiency
    (2019) FRANCA, Monica M.; HAN, Xingfa; FUNARI, Mariana F. A.; LERARIO, Antonio M.; NISHI, Mirian Y.; FONTENELE, Eveline G. P.; DOMENICE, Sorahia; JORGE, Alexander A. L.; GARCIA-GALIANO, David; ELIAS, Carol F.; MENDONCA, Berenice B.
    Context: Primary ovarian insufficiency (POI) is a cause of female infertility. However, the genetic etiology of this disorder remains unknown in most patients with POI. Objective: To investigate the genetic etiology of idiopathic POI. Patients and Methods: We performed whole-exome sequencing of 11 families with idiopathic POI. To gain insights into the potential mechanisms associated with this mutation, we generated two mouse lines via clustered regularly interspaced short palindromic repeats/Cas9 technology. Results: A pathogenic homozygous missense mutation (c.149A>G; p.Asp50G ly) in the POLR3H gene in two unrelated families was identified. Pathogenic mutations in this subunit have not been associated with human disorders. Loss-of-function Polr3h mutation in mice caused early embryonic lethality. Mice with homozygous point mutation (Polr3h(D50G)) were viable but showed delayed pubertal development, characterized by late first estrus or preputial separation. The Polr3h(D50G) female and male mice showed decreased fertility later in life, associated with small litter size and increased time to pregnancy or to impregnate a female. Polr3h(D50G) mice displayed decreased expression of ovarian Foxo3a and lower numbers of primary follicles. Conclusion: Our manuscript provides a case of POI caused by missense mutation in POLR3H, expanding the knowledge of molecular pathways of the ovarian function and human infertility. Screening of the POLR3H gene may elucidate POI cases without previously identified genetic causes, supporting approaches of genetic counseling.
  • conferenceObject
    Isolated Growth Hormone Deficiency with Advanced Bone Age: Phenotypic Interaction between GHRH Receptor and CYP21A2 Mutations Diagnosed by Sanger and Whole Exome Sequencing
    (2016) CORREA, F. A.; FRANCA, M. M.; FANG, Q.; MA, Q.; OZEL, B. A.; BACHEGA, T. A.; RODRIGUES, A.; LI, J. Z.; MENDONCA, B. B.; JORGE, A. A. L.; CARVALHO, L. R.; CAMPER, S. A.; ARNHOLD, I. J. P.
  • article 23 Citação(ões) na Scopus
    Central Precocious Puberty Caused by a Heterozygous Deletion in the MKRN3 Promoter Region
    (2018) MACEDO, Delanie B.; FRANCA, Monica M.; MONTENEGRO, Luciana R.; CUNHA-SILVA, Marina; BESSA, Danielle S.; ABREU, Ana Paula; KAISER, Ursula B.; MENDONCA, Berenice B.; JORGE, Alexander A. L.; BRITO, Vinicius N.; LATRONICO, Ana Claudia
    Context: Loss-of-function mutations in the coding region of MKRN3, a maternally imprinted gene at chromosome 15q11.2, are a common cause of familial central precocious puberty (CPP). Whether MKRN3 alterations in regulatory regions can cause CPP has not been explored to date. We aimed to investigate potential pathogenic variants in the promoter region of MKRN3 in patients with idiopathic CPP. Patients/Methods: A cohort of 110 patients with idiopathic CPP was studied. Family history of precocious sexual development was present in 25%. Mutations in the coding region of MKRN3 were excluded in all patients. Genomic DNA was extracted from peripheral blood leukocytes, and 1,100 nucleotides (nt) of the 5'-regulatory region of MKRN3 were amplified and sequenced. Luciferase assays were performed in GT1-7 cells transiently transfected with plasmids containing mutated and wild-type MKRN3 promoter. Results: We identified a rare heterozygous 4-nt deletion (c.-150_-147delTCAG; -38 to -41 nt upstream to the transcription start site) in the proximal promoter region of MKRN3 in a girl with CPP. In silico analysis predicted that this deletion would lead to the loss of a binding site for a downstream responsive element antagonist modulator (DREAM), a potential transcription factor for MKRN3 and GNRH1 expression. Luciferase assays demonstrated a significant reduction of MKRN3 promoter activity in transfected cells with a c.-150_-147delTCAG construct plasmid in both homozygous and heterozygous states when compared with cells transfected with the corresponding wild-type MKRN3 promoter region. Conclusion: A rare genetic alteration in the regulatory region of MKRN3 causes CPP. (c) 2018 S. Karger AG, Basel
  • conferenceObject
    Targeted Massively Parallel Sequencing for the Molecular Diagnosis of 46, XY Disorders of Sex Development (DSD)
    (2016) GOMES, N. L.; LERARIO, A. M.; FRANCA, M. M.; NISHI, M. Y.; FUNARI, M. F.; COSTA, E. M. F.; FARIA JUNIOR, J. A. D.; BATISTA, R. L.; DOMENICE, S.; MENDONCA, B. B.