JOSE EDUARDO KRIEGER

(Fonte: Lattes)
Índice h a partir de 2011
36
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Cardio-Pneumologia, Faculdade de Medicina - Docente
Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina
LIM/13 - Laboratório de Genética e Cardiologia Molecular, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • conferenceObject
    Automated radiographic bone suppression with deep convolutional neural networks
    (2021) CARDENAS, Diego Armando Cardona; FERREIRA JUNIOR, Jose Raniery; MORENO, Ramon Alfredo; REBELO, Marina de Fatima de Sa; KRIEGER, Jose Eduardo; GUTIERREZ, Marco Antonio
    Dual-energy subtraction (DES) is a technique that separates soft tissue from bones in a chest radiograph (CR). As DES requires specialized equipment, we propose an automatic method based on convolutional neural networks (CNNs) to generate virtual soft tissue images. A dataset comprising 35 pairs of CR and its soft-tissue version split in training (28 image pairs) and testing (7 image pairs) sets were used with data augmentation. We tested two types of images: the lung region's cropped image and the segmented lung image. The ribs suppression was treated as a local problem, so each image was divided into 784 patches. The U-Net architecture was used to perform bone suppression. We tested two types of loss functions: mean squared error (L-mse) and L-sm, which combines L-mse with the structural similarity index measure (SSIM). Due to the patches overlapping, it was necessary to interpolate the gray levels on the reconstructed image from the predicted patches. Evaluations were based on SSIM and root mean square error (RMSE) over the reconstructed lung area. The combination that presented the best results used the loss L-sm and the segmented lung image as input to the U-Net (SSIM of 0.858 and RMSE of 0.033). We observed that the U-Net has poor performance when trained with cropped images containing all information from the chest cavity and how the loss using local information can improve CR rib bone suppression. Our results suggest that it is possible removing the rib bones accurately in CR using CNN and a patch-based approach.y
  • conferenceObject
    A general fully automated deep-learning method to detect cardiomegaly in chest x-rays
    (2021) FERREIRA-JUNIOR, Jose Raniery; CARDENAS, Diego Armando Cardona; MORENO, Ramon Alfredo; REBELO, Marina de Fdtima de Sa; KRIEGER, Jose Eduardo; GUTIERREZ, Marco Antonio
    Cardiomegaly is a medical condition that leads to an increase in cardiac size. It can be manually assessed using the cardiothoracic ratio from chest x-rays (CXRs). However, as that task can be challenging in such limited examinations, we propose the fully automated cardiomegaly detection in CXR. For this, we first trained convolutional networks (ConvNets) to classify the CXR as positive or negative to cardiomegaly and then evaluated the generalization potential of the trained ConvNets on independent cohorts. This work used frontal CXR images from a public dataset for training/testing and another public and one private dataset to test the models' generalization externally. Training and testing were performed using images cropped with a previously developed U-Net model. Experiments were performed with five topologically different ConvNets, data augmentation techniques, and a 50-50 class-weighing strategy to improve performance and reduce the possibility of bias to the majority class. The receiver operating characteristic curve assessed the performance of the models. DenseNet yielded the highest area under the curve (AUC) on testing (0.818) and external validation (0.809) datasets. Moreover, DenseNet obtained the highest sensitivity overall, yielding up to 0.971 on the private dataset with patients from our hospital. Therefore, DenseNet had a statistically higher potential to identify cardiomegaly. The proposed models, especially those trained with DenseNet convolutional core, automatically detected cardiomegaly with high sensitivity. To the best of our knowledge, this was the first work to design a novel general model for classifying specific deep-learning patterns of cardiomegaly in CXRs.