RENATO FRAGA RIGHETTI

(Fonte: Lattes)
Índice h a partir de 2011
14
Projetos de Pesquisa
Unidades Organizacionais
LIM/20 - Laboratório de Terapêutica Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article
    Effects of Anti-IL-17 on Inflammation, Remodeling, and Oxidative Stress in an Experimental Model of Asthma Exacerbated by LPS
    (2018) CAMARGO, Leandro do Nascimento; RIGHETTI, Renato Fraga; ARISTOTELES, Luciana Ritha de Cassia Rolim Barbosa; SANTOS, Tabata Maruyama dos; SOUZA, Flavia Castro Ribas de; FUKUZAKI, Silvia; CRUZ, Maysa Mariana; ALONSO-VALE, Maria Isabel Cardoso; SARAIVA-ROMANHOLO, Beatriz Mangueira; PRADO, Carla Maximo; MARTINS, Milton de Arruda; LEICK, Aparecida; TIBERIO, Iolanda de Fatima Lopes Calvo
    Inflammation plays a central role in the development of asthma, which is considered an allergic disease with a classic Th2 inflammatory profile. However, cytokine IL-17 has been examined to better understand the pathophysiology of this disease. Severe asthmatic patients experience frequent exacerbations, leading to infection, and subsequently show altered levels of inflammation that are unlikely to be due to the Th2 immune response alone. This study estimates the effects of anti-IL-17 therapy in the pulmonary parenchyma in a murine asthma model exacerbated by LPS. BALB/c mice were sensitized with intraperitoneal ovalbumin and repeatedly exposed to inhalation with ovalbumin, followed by treatment with or without anti-IL-17. Twenty-four hours prior to the end of the 29-day experimental protocol, the two groups received LPS (0.1 mg/ml intratracheal OVA-LPS and OVA-LPS IL-17). We subsequently evaluated bronchoalveolar lavage fluid, performed a lung tissue morphometric analysis, and measured IL-6 gene expression. OVA-LPS-treated animals treated with anti-IL-17 showed decreased pulmonary inflammation, edema, oxidative stress, and extracellular matrix remodeling compared to the non-treated OVA and OVA-LPS groups (p < 0.05). The anti-IL-17 treatment also decreased the numbers of dendritic cells, FOXP3, NF-kappa B, and Rho kinase 1-and 2-positive cells compared to the non-treated OVA and OVA-LPS groups (p < 0.05). In conclusion, these data suggest that inhibition of IL-17 is a promising therapeutic avenue, even in exacerbated asthmatic patients, and significantly contributes to the control of Th1/Th2/Th17 inflammation, chemokine expression, extracellular matrix remodeling, and oxidative stress in a murine experimental asthma model exacerbated by LPS.
  • article 10 Citação(ões) na Scopus
    Cholesterol-Ester Transfer Protein Alters M1 and M2 Macrophage Polarization and Worsens Experimental Elastase-Induced Pulmonary Emphysema
    (2021) SANTANA, Kelly Gomes; RIGHETTI, Renato Fraga; BREDA, Cristiane Naffah de Souza; DOMINGUEZ-AMOROCHO, Omar Alberto; RAMALHO, Theresa; DANTAS, Francisca Elda B.; NUNES, Valeria Sutti; TIBERIO, Iolanda de Fatima Lopes Calvo; SORIANO, Francisco Garcia; CAMARA, Niels O. S.; QUINTAO, Eder Carlos Rocha; CAZITA, Patricia M.
    Cholesterol-ester transfer protein (CETP) plays a role in atherosclerosis, the inflammatory response to endotoxemia and in experimental and human sepsis. Functional alterations in lipoprotein (LP) metabolism and immune cell populations, including macrophages, occur during sepsis and may be related to comorbidities such as chronic obstructive pulmonary disease (COPD). Macrophages are significantly associated with pulmonary emphysema, and depending on the microenvironment, might exhibit an M1 or M2 phenotype. Macrophages derived from the peritoneum and bone marrow reveal CETP that contributes to its plasma concentration. Here, we evaluated the role of CETP in macrophage polarization and elastase-induced pulmonary emphysema (ELA) in human CETP-expressing transgenic (huCETP) (line 5203, C57BL6/J background) male mice and compared it to their wild type littermates. We showed that bone marrow-derived macrophages from huCETP mice reduce polarization toward the M1 phenotype, but with increased IL-10. Compared to WT, huCETP mice exposed to elastase showed worsened lung function with an increased mean linear intercept (Lm), reflecting airspace enlargement resulting from parenchymal destruction with increased expression of arginase-1 and IL-10, which are M2 markers. The cytokine profile revealed increased IL-6 in plasma and TNF, and IL-10 in bronchoalveolar lavage (BAL), corroborating with the lung immunohistochemistry in the huCETP-ELA group compared to WT-ELA. Elastase treatment in the huCETP group increased VLDL-C and reduced HDL-C. Elastase-induced pulmonary emphysema in huCETP mice promotes lung M2-like phenotype with a deleterious effect in experimental COPD, corroborating the in vitro result in which CETP promoted M2 macrophage polarization. Our results suggest that CETP is associated with inflammatory response and influences the role of macrophages in COPD.
  • article 3 Citação(ões) na Scopus
    Modulating asthma-COPD overlap responses with IL-17 inhibition
    (2023) CAMARGO, Leandro do Nascimento; RIGHETTI, Renato Fraga; ALMEIDA, Francine Maria de; SANTOS, Tabata Maruyama dos; FUKUZAKI, Silvia; MARTINS, Nilo Arthur Bezerra; BARBEIRO, Miguel Cantadori; SARAIVA-ROMANHOLO, Beatriz Mangueira; LOPES, Fernanda Degobbi Tenorio Quirino dos Santos; LEICK, Edna Aparecida; PRADO, Carla Maximo; TIBERIO, Iolanda de Fatima Lopes Calvo
    Background: IL-17 is a modulator of the inflammatory response and is implicated in lung remodeling in both asthma and chronic obstructive pulmonary disease (COPD). Well as and probably in patients with asthma-COPD overlap (ACO).Methods: In this study, we evaluated the response of the airways and alveolar septa to anti-IL-17 treatment in an ACO model. Fifty-six male BALB/c mice were sensitized with ovalbumin (OVA group), received porcine pancreatic elastase (PPE group), or both (ACO group). Mice were then treated with either anti-IL-17 monoclonal antibody or saline. We evaluated hyperresponsiveness, bronchoalveolar lavage fluid (BALF) cell counts, and mean alveolar diameter. We quantified inflammatory, response, extracellular matrix remodeling, oxidative stress markers, and signaling pathway markers.Results: Anti-IL-17 treatment in the ACO anti-IL-17 group reduced the maximum response of respiratory system Rrs, Ers, Raw, Gtis, this when compared to the ACO group (p<0.05). There was a reduction in the total number of inflammatory cells, neutrophils, and macrophages in the BALF in the ACO anti-IL-17 group compared to the ACO group (p<0.05). There was attenuated dendritic cells, CD4+, CD8+, FOXP3, IL-1 beta, IL-2, IL-6, IL-13, IL-17, IL-33 in ACO anti-IL-17 group in airway and alveolar septum compared to the ACO group (p<0.05). We observed a reduction of MMP-9, MMP-12, TIMP-1, TGF-beta, collagen type I in ACO anti-IL-17 group in airway and alveolar septum compared to the ACO group (p < 0.05). We also observed a reduction of iNOS and 8-iso-PGF2 alpha in the airways and in the alveolar septum was reduced in the ACO anti-IL-17group compared to the ACO group (p < 0.05). Regarding the signaling pathways, NF-kB, ROCK-1, and ROCK-2 in the airway and alveolar septum were attenuated in the ACO anti-IL-17 group when compared to the ACO group (p<0.05).Conclusions: Our results suggest that inhibiting IL-17 modulates cell-associated cytokine production in lung tissue, extracellular matrix remodeling, and oxidative stress in ACO through the modulation of NF-kB and FOXP3.