KARENINA SANTOS CALARGA

(Fonte: Lattes)
Índice h a partir de 2011
2
Projetos de Pesquisa
Unidades Organizacionais

Resultados de Busca

Agora exibindo 1 - 1 de 1
  • article 4 Citação(ões) na Scopus
    Wideband reflectance in Down syndrome
    (2016) SOARES, Jordana Costa; UROSAS, Juliana Granja; CALARGA, Karenina Santos; PICHELLI, Tathiany Silva; LIMONGI, Suelly Cecilia Olivan; SHAHNAZ, Navid; CARVALLO, Renata Mota Mamede
    Objective: Children with Down syndrome (DS) have a high incidence of middle ear disorders and congenital abnormalities of the external, middle and inner ear. Energy reflectance (ER), a wideband acoustic immittance (WAI) measurement parameter, can measure the sound energy reflected or absorbed in the ear canal over a wider range of frequencies more efficiently and faster than conventional single-tone 226 Hz tympanometry. The aim of the present study was to compare the WAI measurements of children with DS with those of typically developing, normal-hearing children according to their tympanometric findings. Methods: Four groups of children with Down syndrome (age range: 2 years and 4 months to 16 years and 3 months; mean age: 8.5 yr) with normal tympanograms (19 ears), flat tympanograms (13 ears), mild negative pressure tympanograms (6 ears between -100 and -199 daPa at the admittance peak) and severe negative pressure tympanograms (4 ears at -200 daPa or lower at the admittance peak) were assessed. All findings were compared with data obtained from 21 ears of a healthy control group (age range: 3 years and 1 month to 13 years and 11 months; mean age: 7.9 yr). The subjects underwent tympanometry with a 226-Hz probe tone frequency and ER measurements along the 200-6,000 Hz range with a chirp stimulus using the Middle-Ear Power Analyzer (MEPA3 - HearID) by Mimosa Acoustics (Champaign, IL), software, version 3.3 [38]. Results: Statistically significant differences were observed in the ER curves for some comparisons between the studied groups. There was also a negative correlation between the static acoustic admittance at the tympanic membrane level and ER measured with a chirp stimulus at 500 and 1,000 Hz. The discriminant analysis technique, which used a chirp stimulus at 1,000 and 1,600 Hz to classify the participants' data based on ER values, achieved a correct classification rate of 59.52% for participants with DS. Conclusion: While groups with abnormal middle ear status, as indicated by tympanometry, showed higher ER values compared to the DS tymp A group and the control group, similar reflectance curves were observed between control group and the DS tymp A group. WAI shows promise as a clinical diagnostic tool in investigating the impact of middle ear disorders in DS group. However, further research is required to investigate this issue in narrower age range group and a larger sample size.