LUIZA DE CAMPOS REIS

(Fonte: Lattes)
Índice h a partir de 2011
9
Projetos de Pesquisa
Unidades Organizacionais
LIM/38 - Laboratório de Epidemiologia e Imunobiologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 3 Citação(ões) na Scopus
    Staphylococcus aureus Protection-Related Type 3 Cell-Mediated Immune Response Elicited by Recombinant Proteins and GM-CSF DNA Vaccine
    (2021) SANTOS, Kamila R.; SOUZA, Fernando N.; RAMOS-SANCHEZ, Eduardo M.; BATISTA, Camila F.; REIS, Luiza C.; FOTORAN, Wesley F.; HEINEMANN, Marcos B.; GOTO, Hiro; GIDLUND, Magnus; CUNHA, Adriano F.; FARIA, Angelica Rosa; ANDRADE, Helida M.; LAGE, Andrey P.; CERQUEIRA, Monica M. O. P.; LIBERA, Alice M. M. P. Della
    Staphylococcus aureus mastitis remains a major challenge for dairy farming. Here, 24 mice were immunized and divided into four groups: G1: control; G2: Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) DNA vaccine; G3: F0F1 ATP synthase subunit alpha (SAS), succinyldiaminopimelate (SDD), and cysteinyl-tRNA synthetase (CTS) recombinant proteins; and G4: SAS+SDD+CTS plus GM-CSF DNA vaccine. The lymphocyte subpopulations, and the intracellular interleukin-17A (IL-17A) and interferon-gamma production in the draining lymph node cells were immunophenotyped by flow cytometry. The immunophenotyping and lymphocyte proliferation was determined in spleen cells cultured with and without S. aureus stimulus. Immunization with S. aureus recombinant proteins generated memory cells in draining lymph nodes. Immunization with the three recombinant proteins plus GM-CSF DNA led to an increase in the percentage of IL-17A(+) cells among overall CD44(+) (memory), T CD4(+), CD4(+) T CD44(+) CD27(-), gamma delta TCR, gamma delta TCR+ CD44(+) CD27(+), and TCRV gamma 4(+) cells. Vaccination with S. aureus recombinant proteins associated with GM-CSF DNA vaccine downregulated T(H)2 immunity. Immunization with the three recombinant proteins plus the GM-CSF DNA led to a proliferation of overall memory T, CD4(+), and CD4(+) TEM cells upon S. aureus stimulus. This approach fostered type 3 immunity, suggesting the development of a protective immune response against S. aureus.
  • article 2 Citação(ões) na Scopus
    Pleiotropic Effect of Hormone Insulin-Like Growth Factor-I in Immune Response and Pathogenesis in Leishmaniases
    (2021) REIS, Luiza C.; RAMOS-SANCHEZ, Eduardo Milton; ARAUJO, Fernanda N.; LEAL, Ariane F.; OZAKI, Christiane Y.; SEVILLANO, Orlando R.; USCATA, Bernardina A.; GOTO, Hiro
    Leishmaniases are diseases caused by several Leishmania species, and many factors contribute to the development of the infection. Because the adaptive immune response does not fully explain the outcome of Leishmania infection and considering that the initial events are crucial in the establishment of the infection, we investigated one of the growth factors, the insulin-like growth factor-I (IGF-I), found in circulation and produced by different cells including macrophages and present in the skin where the parasite is inoculated. Here, we review the role of IGF-I in leishmaniasis experimental models and human patients. IGF-I induces the growth of different Leishmania species in vitro and alters the disease outcome increasing the parasite load and lesion size, especially in L. major- and L. amazonensis-infected mouse leishmaniasis. IGF-I affects the parasite interacting with the IGF-I receptor present on Leishmania. During Leishmania-macrophage interaction, IGF-I acts on the arginine metabolic pathway, resulting in polyamine production both in macrophages and Leishmania. IGF-I and cytokines interact with reciprocal influences on their expression. IL-4 is a hallmark of susceptibility to L. major in murine leishmaniasis, but we observed that IGF-I operates astoundingly as an effector element of the IL-4. Approaching human leishmaniasis, patients with mucosal, disseminated, and visceral diseases presented surprisingly low IGF-I serum levels, suggesting diverse effects than parasite growth. We observed that low IGF-I levels might contribute to the inflammatory response persistence and delayed lesion healing in human cutaneous leishmaniasis and the anemia development in visceral leishmaniasis. We must highlight the complexity of infection revealed depending on the Leishmania species and the parasite's developmental stages. Because IGF-I exerts pleiotropic effects on the biology of interaction and disease pathogenesis, IGF-I turns up as an attractive tool to explore biological and pathogenic processes underlying infection development. IGF-I pleiotropic effects open further the possibility of approaching IGF-I as a therapeutical target.