ODELI NICOLE ENCINAS SEJAS

(Fonte: Lattes)
Índice h a partir de 2011
6
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina - Médico
LIM/48 - Laboratório de Imunologia, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 29 Citação(ões) na Scopus
    A Brazilian Inter-Hospital Candidemia Outbreak Caused by Fluconazole-Resistant Candida parapsilosis in the COVID-19 Era
    (2022) THOMAZ, Danilo Y.; NEGRO, Gilda M. B. Del; RIBEIRO, Leidiane B.; SILVA, Mirian da; CARVALHO, Gabrielle O. M. H.; CAMARGO, Carlos H.; ALMEIDA, Joao N. de; MOTTA, Adriana L.; SICILIANO, Rinaldo F.; SEJAS, Odeli N. E.; ROSSI, Flavia; ABDALA, Edson; STRABELLI, Tania M. V.; BENARD, Gil
    Horizontal transmission of fluconazole-resistant Candida parapsilosis (FRCP) through healthcare workers' hands has contributed to the occurrence of candidemia outbreaks worldwide. Since the first COVID-19 case in Brazil was detected in early 2020, hospitals have reinforced hand hygiene and disinfection practices to minimize SARS-CoV-2 contamination. However, a Brazilian cardiology center, which shares ICU patients with a cancer center under a FRCP outbreak since 2019, reported an increased FRCP candidemia incidence in May 2020. Therefore, the purpose of this study was to investigate an inter-hospital candidemia outbreak caused by FRCP isolates during the first year of the COVID-19 pandemic in Brazil. C. parapsilosis bloodstream isolates obtained from the cancer (n = 35) and cardiology (n = 30) centers in 2020 were submitted to microsatellite genotyping and fluconazole susceptibility testing. The ERG11 gene of all isolates from the cardiology center was sequenced and compared to the corresponding sequences of the FRCP genotype responsible for the cancer center outbreak in 2019. Unprecedentedly, most of the FRCP isolates from the cardiology center presented the same genetic profile and Erg11-Y132F mutation detected in the strain that has been causing the persistent outbreak in the cancer center, highlighting the uninterrupted horizontal transmission of clonal isolates in our hospitals during the COVID-19 pandemic.
  • article 40 Citação(ões) na Scopus
    Environmental Clonal Spread of Azole-Resistant Candida parapsilosis with Erg11-Y132F Mutation Causing a Large Candidemia Outbreak in a Brazilian Cancer Referral Center
    (2021) THOMAZ, Danilo Y.; ALMEIDA, Joao N. de; SEJAS, Odeli N. E.; NEGRO, Gilda M. B. Del; CARVALHO, Gabrielle O. M. H.; GIMENES, Viviane M. F.; SOUZA, Maria Emilia B. de; ARASTEHFAR, Amir; CAMARGO, Carlos H.; MOTTA, Adriana L.; ROSSI, Flavia; PERLIN, David S.; FREIRE, Maristela P.; ABDALA, Edson; BENARD, Gil
    Clonal outbreaks due to azole-resistant Candida parapsilosis (ARCP) isolates have been reported in numerous studies, but the environmental niche of such isolates has yet to be defined. Herein, we aimed to identify the environmental niche of ARCP isolates causing unremitting clonal outbreaks in an adult ICU from a Brazilian cancer referral center. C. parapsilosis sensu stricto isolates recovered from blood cultures, pericatheter skins, healthcare workers (HCW), and nosocomial surfaces were genotyped by multilocus microsatellite typing (MLMT). Antifungal susceptibility testing was performed by the EUCAST (European Committee for Antimicrobial Susceptibility Testing) broth microdilution reference method and ERG11 was sequenced to determine the azole resistance mechanism. Approximately 68% of isolates were fluconazole-resistant (76/112), including pericatheter skins (3/3, 100%), blood cultures (63/70, 90%), nosocomial surfaces (6/11, 54.5%), and HCW's hands (4/28, 14.2%). MLMT revealed five clusters: the major cluster contained 88.2% of ARCP isolates (67/76) collected from blood (57/70), bed (2/2), pericatheter skin (2/3), from carts (3/7), and HCW's hands (3/27). ARCP isolates were associated with a higher 30 day crude mortality rate (63.8%) than non-ARCP ones (20%, p = 0.008), and resisted two environmental decontamination attempts using quaternary ammonium. This study for the first time identified ARCP isolates harboring the Erg11-Y132F mutation from nosocomial surfaces and HCW's hands, which were genetically identical to ARCP blood isolates. Therefore, it is likely that persisting clonal outbreak due to ARCP isolates was fueled by environmental sources. The resistance of Y132F ARCP isolates to disinfectants, and their potential association with a high mortality rate, warrant vigilant source control using effective environmental decontamination.