MARCOS AMAKU

(Fonte: Lattes)
Índice h a partir de 2011
12
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Patologia, Faculdade de Medicina - Docente
LIM/01 - Laboratório de Informática Médica, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 1 Citação(ões) na Scopus
    A Note on the Risk of Infections Invading Unaffected Regions
    (2018) AMAKU, Marcos; COUTINHO, Francisco Antonio Bezerra; ARMSTRONG, Margaret; MASSAD, Eduardo
    We present two probabilistic models to estimate the risk of introducing infectious diseases into previously unaffected countries/regions by infective travellers. We analyse two distinct situations, one dealing with a directly transmitted infection (measles in Italy in 2017) and one dealing with a vector-borne infection (Zika virus in Rio de Janeiro, which may happen in the future). To calculate the risk in the first scenario, we used a simple, nonhomogeneous birth process. The second model proposed in this paper provides a way to calculate the probability that local mosquitoes become infected by the arrival of a single infective traveller during his/her infectiousness period. The result of the risk ofmeasles invasion of Italy was of 93% and the result of the risk of Zika virus invasion of Rio de Janeiro was of 22%.
  • article 18 Citação(ões) na Scopus
    The risk of urban yellow fever resurgence in Aedes-infested American cities
    (2018) MASSAD, Eduardo; AMAKU, Marcos; COUTINHO, Francisco Antonio Bezerra; STRUCHINER, Claudio Jose; LOPEZ, Luis Fernandez; COELHO, Giovanini; WILDER-SMITH, Annelies; BURATTINI, Marcelo Nascimento
    Aedes aegypti, historically known as yellow fever (YF) mosquito, transmits a great number of other viruses such as Dengue, West Nile, Chikungunya, Zika, Mayaro and perhaps Oropouche, among others. Well established in Africa and Asia, Aedes mosquitoes are now increasingly invading large parts of the American continent, and hence the risk of urban YF resurgence in the American cities should because of great concern to public health authorities. Although no new urban cycle of YF was reported in the Americas since the end of an Aedes eradication programme in the late 1950s, the high number of non-vaccinated individuals that visit endemic areas, that is, South American jungles where the sylvatic cycle of YF is transmitted by canopy mosquitoes, and return to Aedes-infested urban areas, increases the risk of resurgence of the urban cycle of YF. We present a method to estimate the risk of urban YF resurgence in dengue-endemic cities. This method consists in (1) to estimate the number of Aedes mosquitoes that explains a given dengue outbreak in a given region; (2) calculate the force of infection caused by the introduction of one infective individual per unit area in the endemic area under study; (3) using the above estimates, calculate the probability of at least one autochthonous YF case per unit area produced by one single viraemic traveller per unit area arriving from a YF endemic or epidemic sylvatic region at the city studied. We demonstrate that, provided the relative vector competence, here defined as the capacity to being infected and disseminate the virus, of Ae. aegypti is greater than 0.7 (with respect to dengue), one infected traveller can introduce urban YF in a dengue endemic area.
  • article 38 Citação(ões) na Scopus
    Estimating the probability of dengue virus introduction and secondary autochthonous cases in Europe
    (2018) MASSAD, Eduardo; AMAKU, Marcos; COUTINHO, Francisco Antonio Bezerra; STRUCHINER, Claudio Jose; BURATTINI, Marcelo Nascimento; KHAN, Kamran; LIU-HELMERSSON, Jing; ROCKLOV, Joacim; KRAEMER, Moritz U. G.; WILDER-SMITH, Annelies
    Given the speed of air travel, diseases even with a short viremia such as dengue can be easily exported to dengue naive areas within 24 hours. We set out to estimate the risk of dengue virus introductions via travelers into Europe and number of secondary autochthonous cases as a result of the introduction. We applied mathematical modeling to estimate the number of dengue-viremic air passengers from 16 dengue-endemic countries to 27 European countries, taking into account the incidence of dengue in the exporting countries, travel volume and the probability of being viremic at the time of travel. Our models estimate a range from zero to 167 air passengers who are dengue-viremic at the time of travel from dengue endemic countries to each of the 27 receiving countries in one year. Germany receives the highest number of imported dengue-viremic air passengers followed by France and the United Kingdom. Our findings estimate 10 autochthonous secondary asymptomatic and symptomatic dengue infections, caused by the expected 124 infected travelers who arrived in Italy in 2012. The risk of onward transmission in Europe is reassuringly low, except where Aedes aegypti is present.
  • article 1 Citação(ões) na Scopus
    The effect of the infection within the individual host on its propagation in the population
    (2018) AZEVEDO, Franciane; AMAKU, Marcos; COUTINHO, Francisco Antonio Bezerra; LOPEZ, Luis Fernandez; MASSAD, Eduardo
    We consider nested or multiscale models to study the effect of the temporal evolution of the disease within the host in the population dynamics of the disease, for one and two infectious agents. We assumed a coupling between the within-host infection rate and the between-host transmission rate. The age of infection within each individual in a population affects the probability of transmission of the disease to a susceptible host and this will affect the temporal evolution of the disease in the host population. To analyze the infection within the host, we consider bacterial-like and viral-like infections. In the model for two infectious agents, we found that, when strain 2 has a basic reproduction number R-02 greater than the basic reproduction number R-01 of strain 1, strain 2 replaces strain 1 in the population. However, if R-02 > R-01 but the values are closer, the replacement does not occur immediately and both strains can coexist for a long time. We applied the model to a scenario in which patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We compared the time for the replacement of HCV by HAV in the population considering instantaneous and non-instantaneous replacement within the individuals. The model developed can be generalized for more than two infectious agents. (C) 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.