KEITY SOUZA SANTOS

(Fonte: Lattes)
Índice h a partir de 2011
12
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Clínica Médica, Faculdade de Medicina - Docente
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 6 de 6
  • article 2 Citação(ões) na Scopus
    IgE and IgG4 Epitopes of Dermatophagoides and Blomia Allergens before and after Sublingual Immunotherapy
    (2023) FIGO, Daniele Danella; MACEDO, Priscilla Rios Cordeiro; GADERMAIER, Gabriele; REMUZGO, Cesar; CASTRO, Fabio Fernandes Morato; KALIL, Jorge; GALVAO, Clovis Eduardo Santos; SANTOS, Keity Souza
    Sublingual immunotherapy (SLIT) is used worldwide to treat house dust mites (HDM) allergy. Epitope specific immunotherapy with peptide vaccines is used far less, but it is of great interest in the treatment of allergic reactions, as it precludes the drawbacks of allergen extracts. The ideal peptide candidates would bind to IgG, blocking IgE-binding. To better elucidate IgE and IgG4 epitope profiles during SLIT, sequences of main allergens, Der p 1, 2, 5, 7, 10, 23 and Blo t 5, 6, 12, 13, were included in a 15-mer peptide microarray and tested against pooled sera from 10 patients pre- and post-1-year SLIT. All allergens were recognized to some extent by at least one antibody isotype and peptide diversity was higher post-1-year SLIT for both antibodies. IgE recognition diversity varied among allergens and timepoints without a clear tendency. Der p 10, a minor allergen in temperate regions, was the molecule with more IgE-peptides and might be a major allergen in populations highly exposed to helminths and cockroaches, such as Brazil. SLIT-induced IgG4 epitopes were directed against several, but not all, IgE-binding regions. We selected a set of peptides that recognized only IgG4 or were able to induce increased ratios of IgG4:IgE after one year of treatment and might be potential targets for vaccines.
  • article 18 Citação(ões) na Scopus
    Proteomic Analysis of Urine in Rats Chronically Exposed to Fluoride
    (2011) KOBAYASHI, Claudia Ayumi Nakai; LEITE, Aline de Lima; SILVA, Thelma Lopes da; SANTOS, Lucilene Delazari dos; NOGUEIRA, Fabio Cesar Sousa; SANTOS, Keity Souza; OLIVEIRA, Rodrigo Cardoso de; PALMA, Mario Sergio; DOMONT, Gilberto Barbosa; BUZALAF, Marilia Afonso Rabelo
    Urine is an ideal source of materials to search for potential disease-related biomarkers as it is produced by the affected tissues and can be easily obtained by noninvasive methods. 2-DE-based proteomic approach was used to better understand the molecular mechanisms of injury induced by fluoride (F-) and define potential biomarkers of dental fluorosis. Three groups of weanling male Wistar rats were treated with drinking water containing 0 (control), 5, or 50 ppm F- for 60 days (n = 15/group). During the experimental period, the animals were kept individually in metabolic cages, to analyze the water and food consumption, as well as fecal and urinary F excretion. Urinary proteome profiles were examined using 2-DE and Colloidal Coomassie Brilliant Blue staining. A dose-response regarding F- intake and excretion was detected. Quantitative intensity analysis revealed 8, 11, and 8 significantly altered proteins between control vs. 5 ppm F-, control vs. 50 ppm F- and 5 ppm F- vs. 50 ppm F- groups, respectively. Two proteins regulated by androgens (androgen-regulated 20-KDa protein and 0c-2,1-globulin) and one related to detoxification (aflatoxin-Bl-aldehyde-reductase) were identified by MALDI-TOF-TOF MS/MS. Thus, proteomic analysis can help to better understand the mechanisms underlying F- toxicity, even in low doses. 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:8-14, 2011; View this article online at wileyonlinelibrary.com. DOI 10:1002/jbt.20353
  • article 6 Citação(ões) na Scopus
    Cashew Tree Pollen: An Unknown Source of IgE-Reactive Molecules
    (2019) FIGO, Daniele Danella; AMICIS, Karine De; AQUINO, Denise Neiva Santos de; POMIECINSKI, Fabiane; GADERMAIER, Gabriele; BRIZA, Peter; GALVAO, Clovis Eduardo Santos; AMARAL, Jonatas Bussador do; MARTINS, Carlo de Oliveira; CASTRO, Fabio Fernandes Morato; KALIL, Jorge; SANTOS, Keity Souza
    Pollinosis is sub-diagnosed and rarely studied in tropical countries. Cashew tree pollen has been reported as an allergen source although the knowledge of its immunoglobulin E (IgE)-reactive molecules is lacking. Therefore, this work aimed to identify IgE-reactive molecules and provide a proteomic profile of this pollen. From the 830 proteins identified by shotgun analysis, 163 were annotated to gene ontology, and a list of 39 proteins filtered for high confidence was submitted to the Allfam database where nine were assigned to allergenic families. Thus, 12 patients from the northeast of Brazil with persistent allergic rhinitis and aggravation of symptoms during cashew flowering season were selected. Using a 2D-based approach, we identified 20 IgE-reactive proteins, four already recognized as allergens, including a homolog of the birch isoflavone-reductase (Bet v 6). IgE-reactivity against the extract in native form was confirmed for five patients in ELISA, with three being positive for Bet v 6. Herein, we present a group of patients with rhinitis exposed to cashew tree pollen with the first description of IgE-binding proteins and a proteomic profile of the whole pollen. Cashew tree pollen is considered an important trigger of rhinitis symptoms in clinical practice in the northeast of Brazil, and the elucidation of its allergenic molecules can improve the diagnostics and treatment for allergic patients.
  • article 5 Citação(ões) na Scopus
    Recurrence of COVID-19 associated with reduced T-cell responses in a monozygotic twin pair
    (2022) V, Mateus de Castro; SANTOS, Keity S.; APOSTOLICO, Juliana S.; FERNANDES, Edgar R.; ALMEIDA, Rafael R.; LEVIN, Gabriel; MAGAWA, Jhosiene Y.; NUNES, Joao Paulo S.; BRUNI, Mirian; YAMAMOTO, Marcio M.; LIMA, Ariane C.; SILVA, Monize V. R.; MATOS, Larissa R. B.; CORIA, Vivian R.; CASTELLI, Erick C.; SCLIAR, Marilia O.; KURAMOTO, Andreia; BRUNO, Fernanda R.; JACINTHO, Lucas C.; NUNES, Kelly; WANG, Jaqueline Y. T.; COELHO, Veronica P.; NETO, Miguel Mitne; MACIEL, Rui M. B.; NASLAVSKY, Michel S.; PASSOS-BUENO, Maria Rita; BOSCARDIN, Silvia B.; ROSA, Daniela S.; KALIL, Jorge; ZATZ, Mayana; CUNHA-NETO, Edecio
    Recurrence of COVID-19 in recovered patients has been increasingly reported. However, the immune mechanisms behind the recurrence have not been thoroughly investigated. The presence of neutralizing antibodies (nAbs) in recurrence/reinfection cases suggests that other types of immune response are involved in protection against recurrence. Here, we investigated the innate type I/III interferon (IFN) response, binding and nAb assays and T-cell responses to severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) with IFN gamma (IFN gamma) enzyme-linked spot assay (ELISPOT) in three pairs of young adult monozygotic (MZ) twins with previous confirmed COVID-19, one of them presenting a severe recurrence four months after the initial infection. Twin studies have been of paramount importance to comprehend the immunogenetics of infectious diseases. Each MZ twin pair was previously exposed to SARS-CoV-2, as seen by clinical reports. The six individuals presented similar overall recovered immune responses except for the recurrence case, who presented a drastically reduced number of recognized SARS-CoV-2 T-cell epitopes on ELISPOT as compared to her twin sister and the other twin pairs. Our results suggest that the lack of a broad T-cell response to initial infection may have led to recurrence, emphasizing that an effective SARS-CoV-2-specific T-cell immune response is key for complete viral control and avoidance of clinical recurrence of COVID-19.
  • article 36 Citação(ões) na Scopus
    Proteomic characterization of the multiple forms of the PLAs from the venom of the social wasp Polybia paulista
    (2011) SANTOS, Lucilene Delazari dos; MENEGASSO, Anally Ribeiro da Silva; PINTO, Jose Roberto Aparecido dos Santos; SANTOS, Keity Souza; CASTRO, Fabio Morato; KALIL, Jorge Elias; PALMA, Mario Sergio
    The phospholipases A(1) (PLA(1)s) from the venom of the social wasp Polybia paulista occur as a mixture of different molecular forms. To characterize the molecular origin of these structural differences, an experimental strategy was planned combining the isolation of the pool of PLAs from the wasp venom with proteomic approaches by using 2-D, MALDI-TOF-TOF MS and classical protocols of protein chemistry, which included N- and C-terminal sequencing. The existence of an intact form of PLA(1) and seven truncated forms was identified, apparently originating from controlled proteolysis of the intact protein; in addition to this, four of these truncated forms also presented carbohydrates attached to their molecules. Some of these forms are immunoreactive to specific-IgE, while others are not. These observations permit to raise the hypothesis that naturally occurring proteolysis of PLA(1), combined with protein glycosylation may create a series of different molecular forms of these proteins, with different levels of allergenicity. Two forms of PLA(2)s, apparently related to each other, were also identified; however, it was not possible to determine the molecular origin of the differences between both forms, except that one of them was glycosylated. None of these forms were immunoreactive to human specific IgE.
  • article 30 Citação(ões) na Scopus
    Proteome and phosphoproteome of Africanized and European honeybee venoms
    (2013) RESENDE, Virginia Maria Ferreira; VASILJ, Andrej; SANTOS, Keity Souza; PALMA, Mario Sergio; SHEVCHENKO, Andrej
    Honey bee venom toxins trigger immunological, physiological, and neurological responses within victims. The high occurrence of bee attacks involving potentially fatal toxic and allergic reactions in humans and the prospect of developing novel pharmaceuticals make honey bee venom an attractive target for proteomic studies. Using label-free quantification, we compared the proteome and phosphoproteome of the venom of Africanized honeybees with that of two European subspecies, namely Apis mellifera ligustica and A. m. carnica. From the total of 51 proteins, 42 were common to all three subspecies. Remarkably, the toxins melittin and icarapin were phosphorylated. In all venoms, icarapin was phosphorylated at the (205)Ser residue, which is located in close proximity to its known antigenic site. Melittin, the major toxin of honeybee venoms, was phosphorylated in all venoms at the (10)Thr and (18)Ser residues. (18)Ser phosphorylated melittinthe major of its two phosphorylated formswas less toxic compared to the native peptide.