SILVIA YUMI BANDO TAKAHARA

(Fonte: Lattes)
Índice h a partir de 2011
10
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Pediatria, Faculdade de Medicina
LIM/36 - Laboratório de Pediatria Clínica, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 5 de 5
  • article 7 Citação(ões) na Scopus
    Age-related transcriptional modules and TF-miRNA-mRNA interactions in neonatal and infant human thymus
    (2020) BERTONHA, Fernanda Bernardi; BANDO, Silvia Yumi; FERREIRA, Leandro Rodrigues; CHACCUR, Paulo; VINHAS, Christiana; ZERBINI, Maria Claudia Nogueira; CARNEIRO-SAMPAIO, Magda Maria; MOREIRA-FILHO, Carlos Alberto
    The human thymus suffers a transient neonatal involution, recovers and then starts a process of decline between the 1st and 2nd years of life. Age-related morphological changes in thymus were extensively investigated, but the genomic mechanisms underlying this process remain largely unknown. Through Weighted Gene Co-expression Network Analysis (WGCNA) and TF-miRNA-mRNA integrative analysis we studied the transcriptome of neonate and infant thymic tissues grouped by age: 0-30 days (A); 31 days-6 months (B); 7-12 months (C); 13-18 months (D); 19-31 months (E). Age-related transcriptional modules, hubs and high gene significance (HGS) genes were identified, as well as TF-miRNA-hub/HGS co-expression correlations. Three transcriptional modules were correlated with A and/or E groups. Hubs were mostly related to cellular/metabolic processes; few were differentially expressed (DE) or related to T-cell development. Inversely, HGS genes in groups A and E were mostly DE. In A (neonate) one third of the hyper-expressed HGS genes were related to T-cell development, against one-twentieth in E, what may correlate with the early neonatal depletion and recovery of thymic T-cell populations. This genomic mechanism is tightly regulated by TF-miRNA-hub/HGS interactions that differentially govern cellular and molecular processes involved in the functioning of the neonate thymus and in the beginning of thymic decline.
  • article 7 Citação(ões) na Scopus
    Hippocampal CA3 transcriptional modules associated with granule cell alterations and cognitive impairment in refractory mesial temporal lobe epilepsy patients
    (2021) BANDO, Silvia Yumi; BERTONHA, Fernanda Bernardi; PIMENTEL-SILVA, Luciana Ramalho; OLIVEIRA, Joao Gabriel Mansano de; CARNEIRO, Marco Antonio Duarte; OKU, Mariana Hiromi Manoel; WEN, Hung-Tzu; CASTRO, Luiz Henrique Martins; MOREIRA-FILHO, Carlos Alberto
    In about a third of the patients with epilepsy the seizures are not drug-controlled. The current limitation of the antiepileptic drug therapy derives from an insufficient understanding of epilepsy pathophysiology. In order to overcome this situation, it is necessary to consider epilepsy as a disturbed network of interactions, instead of just looking for changes in single molecular components. Here, we studied CA3 transcriptional signatures and dentate gyrus histopathologic alterations in hippocampal explants surgically obtained from 57 RMTLE patients submitted to corticoamygdalohippocampectomy. By adopting a systems biology approach, integrating clinical, histopathological, and transcriptomic data (weighted gene co-expression network analysis), we were able to identify transcriptional modules highly correlated with age of disease onset, cognitive dysfunctions, and granule cell alterations. The enrichment analysis of transcriptional modules and the functional characterization of the highly connected genes in each trait-correlated module allowed us to unveil the modules' main biological functions, paving the way for further investigations on their roles in RMTLE pathophysiology. Moreover, we found 15 genes with high gene significance values which have the potential to become novel biomarkers and/or therapeutic targets in RMTLE.
  • article 3 Citação(ões) na Scopus
    Blood leukocyte transcriptional modules and differentially expressed genes associated with disease severity and age in COVID-19 patients
    (2023) BANDO, Silvia Y.; BERTONHA, Fernanda B.; VIEIRA, Sandra E.; OLIVEIRA, Danielle B. L. de; CHALUP, Vanessa N.; DURIGON, Edison L.; PALMEIRA, Patricia; CURI, Ana Cristina P.; FARIA, Caroline S.; ANTONANGELO, Leila; LAUTERBACH, Gerhard da P.; REGALIO, Fabiane A.; CESAR, Roberto M.; MOREIRA-FILHO, Carlos A.
    Since the molecular mechanisms determining COVID-19 severity are not yet well understood, there is a demand for biomarkers derived from comparative transcriptome analyses of mild and severe cases, combined with patients' clinico-demographic and laboratory data. Here the transcriptomic response of human leukocytes to SARS-CoV-2 infection was investigated by focusing on the differences between mild and severe cases and between age subgroups (younger and older adults). Three transcriptional modules correlated with these traits were functionally characterized, as well as 23 differentially expressed genes (DEGs) associated to disease severity. One module, correlated with severe cases and older patients, had an overrepresentation of genes involved in innate immune response and in neutrophil activation, whereas two other modules, correlated with disease severity and younger patients, harbored genes involved in the innate immune response to viral infections, and in the regulation of this response. This transcriptomic mechanism could be related to the better outcome observed in younger COVID-19 patients. The DEGs, all hyper-expressed in the group of severe cases, were mostly involved in neutrophil activation and in the p53 pathway, therefore related to inflammation and lymphopenia. These biomarkers may be useful for getting a better stratification of risk factors in COVID-19.
  • article 10 Citação(ões) na Scopus
    Distinct transcriptional modules in the peripheral blood mononuclear cells response to human respiratory syncytial virus or to human rhinovirus in hospitalized infants with bronchiolitis
    (2019) VIEIRA, Sandra E.; BANDO, Silvia Y.; PAULIS, Milena de; OLIVEIRA, Danielle B. L.; THOMAZELLI, Luciano M.; DURIGON, Edison L.; MARTINEZ, Marina B.; MOREIRA-FILHO, Carlos Alberto
    Human respiratory syncytial virus (HRSV) is the main cause of bronchiolitis during the first year of life, when infections by other viruses, such as rhinovirus, also occur and are clinically indistinguishable from those caused by HRSV. In hospitalized infants with bronchiolitis, the analysis of gene expression profiles from peripheral blood mononuclear cells (PBMC) may be useful for the rapid identification of etiological factors, as well as for developing diagnostic tests, and elucidating pathogenic mechanisms triggered by different viral agents. In this study we conducted a comparative global gene expression analysis of PBMC obtained from two groups of infants with acute viral bronchiolitis who were infected by HRSV (HRSV group) or by HRV (HRV group). We employed a weighted gene co-expression network analysis (WGCNA) which allows the identification of transcriptional modules and their correlations with HRSV or HRV groups. This approach permitted the identification of distinct transcription modules for the HRSV and HRV groups. According to these data, the immune response to HRSV infection comparatively to HRV infection was more associated to the activation of the interferon gamma signaling pathways and less related to neutrophil activation mechanisms. Moreover, we also identified host-response molecular markers that could be used for etiopathogenic diagnosis. These results may contribute to the development of new tests for respiratory virus identification. The finding that distinct transcriptional profiles are associated to specific host responses to HRSV or to HRV may also contribute to the elucidation of the pathogenic mechanisms triggered by different respiratory viruses, paving the way for new therapeutic strategies.
  • article 6 Citação(ões) na Scopus
    Dynamic Gene Network Analysis of Caco-2 Cell Response to Shiga Toxin-Producing Escherichia coli-Associated Hemolytic-Uremic Syndrome
    (2019) BANDO, Silvia Y.; IAMASHITA, Priscila; SILVA, Filipi N.; COSTA, Luciano da F.; ABE, Cecilia M.; BERTONHA, Fernanda B.; GUTH, Beatriz E. C.; FUJITA, Andre; MOREIRA-FILHO, Carlos A.
    Shiga toxin-producing Escherichia coli (STEC) O113:H21 strains are associated with human diarrhea and some strains may cause hemolytic-uremic syndrome (HUS). In Brazil, these strains are commonly found in cattle but, so far, were not isolated from HUS patients. Here, a system biology approach was used to investigate the differential transcriptomic and phenotypic responses of enterocyte-like Caco-2 cells to two STEC O113:H21 strains with similar virulence factor profiles (i.e., expressing stx2, ehxA, epeA, espA, iha, saa, sab, and subA): EH41 (Caco-2/EH41), isolated from a HUS patient in Australia, and Ec472/01 (Caco-2/Ec472), isolated from bovine feces in Brazil, during a 3 h period of bacteria-enterocyte interaction. Gene co-expression network analysis for Caco-2/EH41 revealed a quite abrupt pattern of topological variation along 3 h of enterocyte-bacteria interaction when compared with networks obtained for Caco-2/Ec472. Transcriptional module characterization revealed that EH41 induces inflammatory and apoptotic responses in Caco-2 cells just after the first hour of enterocyte-bacteria interaction, whereas the response to Ec472/01 is associated with cytoskeleton organization at the first hour, followed by the expression of immune response modulators. Scanning electron microscopy showed more intense microvilli destruction in Caco-2 cells exposed to EH41 when compared to those exposed to Ec472/01. Altogether, these results show that EH41 expresses virulence genes, inducing a distinctive host cell response, and is likely associated with severe pathogenicity.