VICTOR DEBBAS

(Fonte: Lattes)
Índice h a partir de 2011
11
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Cardio-Pneumologia, Faculdade de Medicina
LIM/19 - Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 28 Citação(ões) na Scopus
    CD100 and plexins B2 and B1 mediate monocyte-endothelial cell adhesion and might take part in atherogenesis
    (2015) LUQUE, Maria Carolina A.; GUTIERREZ, Paulo S.; DEBBAS, Victor; KALIL, Jorge; STOLF, Beatriz S.
    Leukocyte migration is essential for the function of the immune system. Their recruitment from the vessels to the tissues involves sequential molecular interactions between leukocytes and endothelial cells (ECs). Many adhesion molecules involved in this process have already been described. However, additional molecules may be important in this interaction, and here we explore the potential role for CD100 and plexins in monocyte-EC binding. CD100 was shown to be involved in platelet-endothelial cell interaction, an important step in atherogenesis and thrombus formation. In a recent work we have described CD100 expression in monocytes and in macrophages and foam cells of human atherosclerotic plaques. In the present work, we have identified plexin B2 as a putative CD100 receptor in these cells. We have detected CD100 expression in the endothelium as well as in in vitro cultured endothelial cells. Blocking of CD 100, plexin B1 and/or B2 in adhesion experiments have shown that both CD100 and plexins act as adhesion molecules involved in monocyte-endothelial cell binding. This effect may be mediated by CD100 expressed in both cell types, probably coupled to the receptors endothelial plexin B1 and monocytic plexin B2. These results can bring new insights about a possible biological activity of CD100 in monocyte adhesion and atherosclerosis, as well as a future candidate for targeting therapeutics. (C) 2015 The Authors.
  • article 17 Citação(ões) na Scopus
    Phage Display Identification of CD100 in Human Atherosclerotic Plaque Macrophages and Foam Cells
    (2013) LUQUE, Maria Carolina Aquino; GUTIERREZ, Paulo Sampaio; DEBBAS, Victor; MARTINS, Waleska Kerllen; PUECH-LEAO, Pedro; PORTO, Georgia; COELHO, Veronica; BOUMSELL, Laurence; KALIL, Jorge; STOLF, Beatriz
    Atherosclerosis is a complex disease in which vessels develop plaques comprising dysfunctional endothelium, monocyte derived lipid laden foam cells and activated lymphocytes. Considering that humans and animal models of the disease develop quite distinct plaques, we used human plaques to search for proteins that could be used as markers of human atheromas. Phage display peptide libraries were probed to fresh human carotid plaques, and a bound phage homologous to plexin B1, a high affinity receptor for CD100, was identified. CD100 is a member of the semaphorin family expressed by most hematopoietic cells and particularly by activated T cells. CD100 expression was analyzed in human plaques and normal samples. CD100 mRNA and protein were analyzed in cultured monocytes, macrophages and foam cells. The effects of CD100 in oxLDL-induced foam cell formation and in CD36 mRNA abundance were evaluated. Human atherosclerotic plaques showed strong labeling of CD100/SEMA4D. CD100 expression was further demonstrated in peripheral blood monocytes and in in vitro differentiated macrophages and foam cells, with diminished CD100 transcript along the differentiation of these cells. Incubation of macrophages with CD100 led to a reduction in oxLDL-induced foam cell formation probably through a decrease of CD36 expression, suggesting for the first time an atheroprotective role for CD100 in the human disease. Given its differential expression in the numerous foam cells and macrophages of the plaques and its capacity to decrease oxLDL engulfment by macrophages we propose that CD100 may have a role in atherosclerotic plaque development, and may possibly be employed in targeted treatments of these atheromas.
  • article 11 Citação(ões) na Scopus
    Quiescin sulfhydryl oxidase (QSOX) is expressed in the human atheroma core: possible role in apoptosis
    (2011) ANDRADE, Claudia R. de; STOLF, Beatriz S.; DEBBAS, Victor; ROSA, Daniela S.; KALIL, Jorge; COELHO, Veronica; LAURINDO, Francisco R. M.
    Quiescin sulfhydryl oxidases (QSOXs) catalyze the formation of disulfide bonds in peptides and proteins, and in vertebrates comprise two proteins: QSOX1 and QSOX2. QSOX1, the most extensively studied type, has been implicated in protein folding, production of extracellular matrix, redox regulation, protection from apoptosis, angiogenesis, and cell differentiation. Atherosclerosis is an immunopathological condition in which redox processes, apoptosis, cell differentiation, and matrix secretion/maturation have critical roles. Considering these data, we hypothesized that QSOX1 could be involved in this disease, possibly reducing apoptosis and angiogenesis inside the plaque. QSOX1 labeling in normal human carotid vessels showed predominant expression by endothelium, subendothelium, and adventitia. In atherosclerotic plaques, however, QSOX1 was highly expressed in macrophages at the lipid core. QSOX1 expression was also studied in terms of mRNA and protein in cell types present in plaques under apoptotic or activating stimuli, emulating conditions found in the atherosclerotic process. QSOX1 mRNA increased in endothelial cells and macrophages after the induction of apoptosis. At the protein level, the correlation between apoptosis and QSOX1 expression was not evident in all cell types, possibly because of a rapid secretion of QSOX1. Our results propose for the first time possible roles for QSOX1 in atherosclerosis, being upregulated in endothelial cells and macrophages by apoptosis and cell activation, and possibly controlling these processes, as well as angiogenesis. The quantitative differences in QSOX1 induction may depend on the cell type and also on local factors.