Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay

Carregando...
Imagem de Miniatura
Citações na Scopus
26
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
FUTURE MEDICINE LTD
Autores
ZHOU, Enhua H.
WATSON, Christa
PIZZO, Richard
COHEN, Joel
Quynh Dang
PARK, Chan Young
CHEN, Cheng
BRAIN, Joseph D.
BUTLER, James P.
Citação
NANOMEDICINE, v.9, n.18, p.2803-2815, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aim: As engineered nanoparticles (ENPs) increasingly enter consumer products, humans become increasingly exposed. The first line of defense against ENPs is the epithelium, the integrity of which can be compromised by wounds induced by trauma, infection, or surgery, but the implications of ENPs on wound healing are poorly understood. Materials & methods: Herein, we developed an in vitro assay to assess the impact of ENPs on the wound healing of cells from human cornea. Results & discussion: We show that industrially relevant ENPs impeded wound healing and cellular migration in a manner dependent on the composition, dose and size of the ENPs as well as cell type. CuO and ZnO ENPs impeded both viability and wound healing for both fibroblasts and epithelial cells. Carboxylated polystyrene ENPs retarded wound healing of corneal fibroblasts without affecting viability. Conclusion: Our results highlight the impact of ENPs on cellular wound healing and provide useful tools for studying the physiological impact of ENPs.
Palavras-chave
corneal wound healing, engineered nanoparticles, high-throughput screening, nano-EHS, nanotechnology, nanotoxicology
Referências
  1. Anon E, 2012, P NATL ACAD SCI USA, V109, P10891, DOI 10.1073/pnas.1117814109
  2. Apopa PL, 2009, PART FIBRE TOXICOL, V6, DOI 10.1186/1743-8977-6-1
  3. Atiyeh BS, 2007, BURNS, V33, P139, DOI 10.1016/j.burns.2006.06.010
  4. BCC Research, 2011, NAN04713 BCC RES
  5. BCC Research, 2010, NAN031D BCC RES
  6. Bello D, 2012, NANOTOXICOLOGY, V7, P989
  7. Berntsen P, 2010, J R SOC INTERFACE, V7, pS331, DOI 10.1098/rsif.2010.0068.focus
  8. Buyukhatipoglu K, 2011, J BIOMED MATER RES A, V96A, P186, DOI 10.1002/jbm.a.32972
  9. Cohen J, 2013, NANOTOXICOLOGY, V7, P417, DOI 10.3109/17435390.2012.666576
  10. Cordeiro JV, 2013, NAT REV MOL CELL BIO, V14, P249, DOI 10.1038/nrm3541
  11. Demokritou P, 2013, NANOTOXICOLOGY, V7, P1338, DOI 10.3109/17435390.2012.739665
  12. Deng XY, 2009, NANOTECHNOLOGY, V20, DOI 10.1088/0957-4484/20/11/115101
  13. Derjaguin B.V., 1941, ACTA PHYSICOCHIM URS, V14, P633, DOI 10.1016/0079-6816(93)90013-L
  14. Drakonakis VM, 2010, POLYM COMPOSITE, V31, P1965, DOI 10.1002/pc.20996
  15. Everett WN, 2014, TOXICOL LETT, V225, P177, DOI 10.1016/j.toxlet.2013.12.005
  16. Fahmy B, 2009, TOXICOL IN VITRO, V23, P1365, DOI 10.1016/j.tiv.2009.08.005
  17. Gipson IK, 2003, INVEST OPHTH VIS SCI, V44, P2496, DOI 10.1167/iovs.02-0851
  18. Gough W, 2011, J BIOMOL SCREEN, V16, P155, DOI 10.1177/1087057110393340
  19. Guo XQ, 2007, INVEST OPHTH VIS SCI, V48, P4050, DOI 10.1167/iovs.06-1216
  20. Hamilton RF, 2009, PART FIBRE TOXICOL, V6, DOI 10.1186/1743-8977-6-35
  21. Ji ZX, 2010, ENVIRON SCI TECHNOL, V44, P7309, DOI 10.1021/es100417s
  22. Kessler Rebecca, 2011, Environ Health Perspect, V119, pa120, DOI 10.1289/ehp.119-a120
  23. Kim JH, 2013, NAT MATER, V12, P856, DOI [10.1038/nmat3689, 10.1038/NMAT3689]
  24. Kokonou M, 2008, MICROELECTRON ENG, V85, P1186, DOI 10.1016/j.mee.2007.12.004
  25. Landsiedel R, 2010, ADV MATER, V22, P2601, DOI 10.1002/adma.200902658
  26. Larsen ST, 2010, BASIC CLIN PHARMACOL, V106, P114, DOI 10.1111/j.1742-7843.2009.00473.x
  27. Li JJ, 2010, EXP BIOL MED, V235, P1025, DOI 10.1258/ebm.2010.010021
  28. Lorenz Christiane, 2011, Nanotoxicology, V5, P12, DOI 10.3109/17435390.2010.484554
  29. Mahler GJ, 2012, NAT NANOTECHNOL, V7, P264, DOI [10.1038/nnano.2012.3, 10.1038/NNANO.2012.3]
  30. Mihai C, 2012, AM J PHYSIOL-LUNG C, V302, pL287, DOI 10.1152/ajplung.00037.2011
  31. Muller L, 2010, J R SOC INTERFACE, V7, pS27, DOI 10.1098/rsif.2009.0161.focus
  32. Nel A, 2006, SCIENCE, V311, P622, DOI 10.1126/science.1114397
  33. Nel A, 2005, SCIENCE, V308, P804, DOI 10.1126/science.1108752
  34. Novaes P, 2010, ENVIRON RES, V110, P372, DOI 10.1016/j.envres.2010.03.003
  35. Novaes P, 2007, ENVIRON HEALTH PERSP, V115, P1753, DOI 10.1289/ehp.10363
  36. Oberdorster G, 2005, ENVIRON HEALTH PERSP, V113, P823, DOI 10.1289/ehp.7339
  37. Payton Mark E, 2003, J Insect Sci, V3, P34
  38. Petrie RJ, 2009, NAT REV MOL CELL BIO, V10, P538, DOI 10.1038/nrm2729
  39. Pirela S, 2013, INHAL TOXICOL, V25, P498, DOI 10.3109/08958378.2013.806614
  40. Poland CA, 2008, NAT NANOTECHNOL, V3, P423, DOI 10.1038/nnano.2008.111
  41. Poujade M, 2007, P NATL ACAD SCI USA, V104, P15988, DOI 10.1073/pnas.0705062104
  42. Project on Emerging Nanotechnologies, 2011, NAN CONS PROD INV
  43. Reed RB, 2012, ENVIRON TOXICOL CHEM, V31, P93, DOI 10.1002/etc.708
  44. Schultz GS, 2009, WOUND REPAIR REGEN, V17, P153, DOI 10.1111/j.1524-475X.2009.00466.x
  45. Studer AM, 2010, TOXICOL LETT, V197, P169, DOI 10.1016/j.toxlet.2010.05.012
  46. Tambe DT, 2011, NAT MATER, V10, P469, DOI [10.1038/nmat3025, 10.1038/NMAT3025]
  47. Torricelli AAM, 2011, ARQ BRAS OFTALMOL, V74, P377, DOI 10.1590/S0004-27492011000500016
  48. Wiesner MR, 2006, WATER SCI TECHNOL, V53, P45, DOI 10.2166/wst.2006.105
  49. Wright JB, 2002, WOUND REPAIR REGEN, V10, P141, DOI 10.1046/j.1524-475X.2002.10308.x
  50. Xia T, 2008, ACS NANO, V2, P85, DOI 10.1021/nn700256c
  51. Xia T, 2008, ACS NANO, V2, P2121, DOI 10.1021/nn800511k
  52. Zahm JM, 1997, CELL MOTIL CYTOSKEL, V37, P33, DOI 10.1002/(SICI)1097-0169(1997)37:1<33::AID-CM4>3.0.CO;2-I
  53. Zhang HY, 2012, ACS NANO, V6, P4349, DOI 10.1021/nn3010087