Auditory brainstem implant in postmeningitis totally ossified cochleae

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Citação
ACTA OTO-LARYNGOLOGICA, v.138, n.8, p.722-726, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: An auditory brainstem implant (ABI) is an option for auditory rehabilitation in patients with totally ossified cochleae who cannot receive a conventional cochlear implant. Objective: To evaluate the outcomes in audiometry and speech perception tests after the implantation of an ABI via the extended retrolabyrinthine approach in patients with postmeningitis hearing loss. Materials and methods: Ten patients, including children and adults, with postmeningitis hearing loss and bilateral totally ossified cochleae received an ABI in a tertiary center from 2009 to 2015. The extended retrolabyrinthine approach was performed in all the patients by the same surgeons. A statistical analysis compared pure tonal averages and speech perception tests before and at least 12 months after the ABI activation. Results: Eight patients (80%) showed improvements in tonal audiometry and the word and vowel perception tests after an average follow-up of 3.3 years. Two patients recognized up to 40% of the closed-set sentences without lip-reading. Two patients had no auditory response. Conclusions: The ABI improved hearing performance in audiometry and speech perception tests in cases of postmeningitis hearing loss. The extended retrolabyrinthine approach is a safe surgical option for patients with postmeningitis hearing loss and bilateral totally ossified cochleae.
Palavras-chave
Auditory brainstem implant, meningitis, cochlear ossification, hearing loss, deafness, cochlear implantation
Referências
  1. Bayazit Y, 2016, LARYNGOSCOPE, V126, P1889, DOI 10.1002/lary.25731
  2. Bento RF, 2012, ACTA OTO-LARYNGOL, V132, P462, DOI 10.3109/00016489.2011.643455
  3. Brito Neto Rubens Vuono, 2005, Braz J Otorhinolaryngol, V71, P282
  4. Choi JY, 2011, LARYNGOSCOPE, V121, P2610, DOI 10.1002/lary.22137
  5. Coelho DH, 2012, OTOLARYNG CLIN N AM, V45, P91, DOI 10.1016/j.otc.2011.08.019
  6. Colletti V, 2004, OTOL NEUROTOL, V25, P485, DOI 10.1097/00129492-200407000-00016
  7. Colletti V, 2005, OTOLARYNG HEAD NECK, V133, P126, DOI 10.1016/j.otohns.2005.03.022
  8. Colletti V, 2010, OTOL NEUROTOL, V31, P558, DOI 10.1097/MAO.0b013e3181db7055
  9. Colletti V, 2009, OTOL NEUROTOL, V30, P614, DOI 10.1097/MAO.0b013e3181a864f2
  10. Edmond K, 2010, LANCET INFECT DIS, V10, P317, DOI 10.1016/S1473-3099(10)70048-7
  11. Goffi-Gomez MVS, 2004, ARQUIV INT OTORRINOL, V8, P295
  12. Grayeli AB, 2007, AUDIOL NEURO-OTOL, V12, P27, DOI 10.1159/000096155
  13. Grayeli AB, 2008, OTOL NEUROTOL, V29, P1140, DOI 10.1097/MAO.0b013e31818b6238
  14. Kaplan AB, 2015, INT J PEDIATR OTORHI, V79, P310, DOI 10.1016/j.ijporl.2014.11.023
  15. Lenarz T, 2001, OTOL NEUROTOL, V22, P823, DOI 10.1097/00129492-200111000-00019
  16. Nevison B, 2002, EAR HEARING, V23, P170, DOI 10.1097/00003446-200206000-00002
  17. Sanna M, 2006, LARYNGOSCOPE, V116, P1700, DOI 10.1097/01.mlg.0000231739.79208.97
  18. Shannon RV, 2015, HEARING RES, V322, P57, DOI 10.1016/j.heares.2014.11.003
  19. Siegbahn M, 2014, ACTA OTO-LARYNGOL, V134, P1052, DOI 10.3109/00016489.2014.909051
  20. Tan VYJ, 2012, INT J PEDIATR OTORHI, V76, P300, DOI 10.1016/j.ijporl.2011.11.026