Noninvasive Neuromodulation Techniques in Difficult Tracheostomy Weaning of Patients With Spinal Cord Injury Report of Two Cases

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
CHEST, v.159, n.5, p.E299-E302, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
High spinal cord injured patients (SCI) are susceptible to respiratory muscle impairments. Transcranial direct current stimulation (tDCS) and peripheral electrical stimulation (PES) may influence the diaphragm's central control, but until now they are not described as a therapeutic resource for difficult weaning. We present two case reports of SCI patients (P1 and P2) with long-term tracheostomy (>40 days) and hospital stay (>50 days). In association with respiratory exercise, P1 received a combined application of anodal tDCS over the supplementary motor area plus sensory PES in the thoracic-abdominal muscles, and P2 received isolated excitatory PES in the abdominal muscles, applied daily except on weekends. Maximum inspiratory/expiratory pressure, peak cough flow, diaphragm excursion, and thickening fraction were measured in the first and last days of the protocol. Both patients had improvements, with clinical impact such as cough effectiveness, decannulated after 15 applications of stimulation. Augmentation of neural respiratory drive and corticospinal excitability is suggested.
Palavras-chave
spinal cord injury, transcranial direct current stimulation
Referências
  1. Bezdudnaya T, 2017, EXP NEUROL, V293, P181, DOI 10.1016/j.expneurol.2017.04.003
  2. Bikson M., 2019, MECH ACUTE EFFECTS T, P81, DOI [10.1007/978-3-319-95948-1_3, DOI 10.1007/978-3-319-95948-1_3]
  3. Boon AJ, 2013, MUSCLE NERVE, V47, P884, DOI 10.1002/mus.23702
  4. Chipchase LS, 2011, CLIN NEUROPHYSIOL, V122, P456, DOI 10.1016/j.clinph.2010.07.025
  5. Chipchase LS, 2011, ARCH PHYS MED REHAB, V92, P1423, DOI 10.1016/j.apmr.2011.01.011
  6. Christiansen L, 2018, ELIFE, V7, DOI 10.7554/eLife.34304
  7. Ellaway PH, 2014, FRONT INTEGR NEUROSC, V8, DOI 10.3389/fnint.2014.00042
  8. Fogarty MJ, 2020, EXPERT REV RESP MED, V14, P453, DOI 10.1080/17476348.2020.1732822
  9. Gunduz A, 2017, NEURAL REGEN RES, V12, P1933, DOI 10.4103/1673-5374.221143
  10. Hassid VJ, 2008, J TRAUMA, V65, P1328, DOI 10.1097/TA.0b013e31818d07e4
  11. Hazime FA, 2017, EUR J PAIN, V21, P1132, DOI 10.1002/ejp.1037
  12. Lucia Domingues EC., 2011, RESEARCHGATE
  13. Raux M, 2010, J APPL PHYSIOL, V108, P39, DOI 10.1152/japplphysiol.91454.2008
  14. Schabrun SM, 2014, BRAIN STIMUL, V7, P451, DOI 10.1016/j.brs.2014.01.058
  15. Sharshar T, 2004, J APPL PHYSIOL, V97, P3, DOI 10.1152/japplphysiol.01099.2003
  16. Veldman MP, 2014, NEUROSCI BIOBEHAV R, V47, P22, DOI 10.1016/j.neubiorev.2014.07.013
  17. Veldman MP, 2018, J NEUROPHYSIOL, V120, P281, DOI 10.1152/jn.00860.2017
  18. Winslow C, 2002, CHEST, V121, P1548, DOI 10.1378/chest.121.5.1548
  19. Wu WL, 2017, INT J CHRONIC OBSTR, V12, P773, DOI 10.2147/COPD.S126354
  20. Yamaguchi T, 2016, EXP BRAIN RES, V234, P1469, DOI 10.1007/s00221-016-4561-4