Muscle Ultrasound Changes Correlate With Functional Impairment in Spinal Muscular Atrophy

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Citação
ULTRASOUND IN MEDICINE AND BIOLOGY, v.49, n.7, p.1569-1574, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: We investigated ultrasound patterns of muscle involvement in different types of spinal muscular atrophy (SMA) and their correlation with functional status to determine the pattern of muscle compromise in patients with SMA and the potential role of ultrasound to evaluate disease progression. Methods: We examined muscles (biceps brachii, rectus femoris, diaphragm, intercostals and thoracic multifidus) of 41 patients with SMA (types 1 to 4) and 46 healthy age-and sex-matched control individuals using B-mode ultra-sound for gray-scale analysis (GSA), area (biceps brachii and rectus femoris) and diaphragm thickening ratio. Functional scales were applied to patients only. We analyzed ultrasound abnormalities in specific clinical subtypes and correlated findings with functional status. Results: Compared with controls, patients had reduced muscle area and increased mean GSA for all muscles (p < 0.001), with an established correlation between the increase in GSA and the severity of SMA for biceps brachii, rectus femoris and intercostals (p = 0.03, 0.01 and 0.004 respectively) when using the Hammersmith Functional Motor Scale Expanded. Diaphragm thickening ratio was normal in the majority of patients, and intercostal muscles had higher GSA than diaphragm in relation to the controls. Conclusion: Ultrasound is useful for quantifying muscular changes in SMA and correlates with functional status. Diaphragm thickening ratio can be normal even with severe compromise of respiratory muscles in quantitative analysis, and intercostal muscles were more affected than diaphragm.
Palavras-chave
Spinal muscular atrophy, Muscle ultrasound, Quantitative ultrasound, Outcome measure, Respiratory muscles
Referências
  1. Abraham A, 2019, MUSCLE NERVE, V60, P687, DOI 10.1002/mus.26693
  2. Arts IMP, 2010, MUSCLE NERVE, V41, P32, DOI 10.1002/mus.21458
  3. Baldwin CE, 2011, RESPIROLOGY, V16, P1136, DOI 10.1111/j.1440-1843.2011.02005.x
  4. Boon AJ, 2014, NEUROLOGY, V83, P1264, DOI 10.1212/WNL.0000000000000841
  5. Buonsenso D, 2020, PEDIATR PULM, V55, P1781, DOI 10.1002/ppul.24814
  6. Chang KV, 2019, DIABET METAB SYND OB, V12, P1821, DOI 10.2147/DMSO.S219649
  7. Chang KV, 2018, EXP GERONTOL, V108, P54, DOI 10.1016/j.exger.2018.03.019
  8. Cohen J., 1988, STAT POWER ANAL BEHA
  9. DeBruin PF, 1997, THORAX, V52, P472, DOI 10.1136/thx.52.5.472
  10. Dubé BP, 2017, THORAX, V72, P811, DOI 10.1136/thoraxjnl-2016-209459
  11. Fayssoil Abdallah, 2018, J Neuromuscul Dis, V5, P1, DOI 10.3233/JND-170276
  12. Finkel RS, 2017, NEW ENGL J MED, V377, P1723, DOI 10.1056/NEJMoa1702752
  13. Finkel RS, 2014, NEUROLOGY, V83, P810, DOI 10.1212/WNL.0000000000000741
  14. Glanzman AM, 2011, PEDIATR PHYS THER, V23, P322, DOI 10.1097/PEP.0b013e3182351f04
  15. Glanzman AM, 2011, J CHILD NEUROL, V26, P1499, DOI 10.1177/0883073811420294
  16. HECKMATT JZ, 1982, J PEDIATR-US, V101, P656, DOI 10.1016/S0022-3476(82)80286-2
  17. HECKMATT JZ, 1988, MUSCLE NERVE, V11, P56, DOI 10.1002/mus.880110110
  18. Katzberg HD, 2016, J CLIN NEUROPHYSIOL, V33, P80, DOI 10.1097/WNP.0000000000000234
  19. Lee EP, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0183560
  20. LEFEBVRE S, 1995, CELL, V80, P155, DOI 10.1016/0092-8674(95)90460-3
  21. Mah JK, 2018, CAN J NEUROL SCI, V45, P605, DOI 10.1017/cjn.2018.314
  22. Maurits NM, 2003, ULTRASOUND MED BIOL, V29, P215, DOI 10.1016/S0301-5629(02)00758-5
  23. Mendonca RH, 2020, NEUROL-GENET, V6, P1
  24. Montes J, 2009, J CHILD NEUROL, V24, P968, DOI 10.1177/0883073809332702
  25. MUNSAT TL, 1992, NEUROMUSCULAR DISORD, V2, P423, DOI 10.1016/S0960-8966(06)80015-5
  26. Ng KW, 2015, J NEUROL SCI, V358, P178, DOI 10.1016/j.jns.2015.08.1532
  27. Piepers S, 2008, J NEUROL, V255, P1400, DOI 10.1007/s00415-008-0929-0
  28. Pillen S, 2003, MUSCLE NERVE, V27, P699, DOI 10.1002/mus.10385
  29. Pillen S, 2016, HAND CLINIC, V136, P843, DOI 10.1016/B978-0-444-53486-6.00042-9
  30. Pillen S, 2011, NEUROLOGY, V76, P933, DOI 10.1212/WNL.0b013e3182068eed
  31. Ricoy J, 2019, PULMONOLOGY, V25, P223, DOI 10.1016/j.pulmoe.2018.10.008
  32. Sarwal A, 2013, MUSCLE NERVE, V47, P319, DOI 10.1002/mus.23671
  33. Schober P, 2018, ANESTH ANALG, V126, P1763, DOI 10.1213/ANE.0000000000002864
  34. Scholten RR, 2003, MUSCLE NERVE, V27, P693, DOI 10.1002/mus.10384
  35. Schorling DC, 2020, J NEUROMUSCULAR DIS, V7, P1, DOI 10.3233/JND-190424
  36. Simon NG, 2016, J CLIN NEUROSCI, V33, P1, DOI 10.1016/j.jocn.2016.01.041
  37. UEKI J, 1995, THORAX, V50, P1157, DOI 10.1136/thx.50.11.1157
  38. Wu JS, 2010, NEUROLOGY, V75, P526, DOI 10.1212/WNL.0b013e3181eccf8f
  39. Zuberi SM, 1999, NEUROMUSCULAR DISORD, V9, P203, DOI 10.1016/S0960-8966(99)00002-4