ATP2, The essential P4-ATPase of malaria parasites, catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 beta-subunit

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Autores
LAMY, Anais
DIEUDONNE, Thibaud
PERALVAREZ-MARIN, Alex
LENOIR, Guillaume
MONTIGNY, Cedric
MAIRE, Marc le
VAZQUEZ-IBAR, Jose Luis
Citação
EMERGING MICROBES & INFECTIONS, v.10, n.1, p.132-147, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Gene targeting approaches have demonstrated the essential role for the malaria parasite of membrane transport proteins involved in lipid transport and in the maintenance of membrane lipid asymmetry, representing emerging oportunites for therapeutical intervention. This is the case of ATP2, a Plasmodium-encoded 4 P-type ATPase (P4-ATPase or lipid flippase), whose activity is completely irreplaceable during the asexual stages of the parasite. Moreover, a recent chemogenomic study has situated ATP2 as the possible target of two antimalarial drug candidates. In eukaryotes, P4-ATPases assure the asymmetric phospholipid distribution in membranes by translocating phospholipids from the outer to the inner leaflet. In this work, we have used a recombinantly-produced P. chabaudi ATP2 (PcATP2), to gain insights into the function and structural organization of this essential transporter. Our work demonstrates that PcATP2 associates with two of the three Plasmodium-encoded Cdc50 proteins: PcCdc50B and PcCdc50A. Purified PcATP2/PcCdc50B complex displays ATPase activity in the presence of either phosphatidylserine or phosphatidylethanolamine. In addition, this activity is upregulated by phosphatidylinositol 4-phosphate. Overall, our work describes the first biochemical characterization of a Plasmodium lipid flippase, a first step towards the understanding of the essential physiological role of this transporter and towards its validation as a potential antimalarial drug target.
Palavras-chave
Malaria, P4-ATPases, lipid flippase, PfATP2, membrane transport proteins, heterologous expression
Referências
  1. Andersen JP, 2016, FRONT PHYSIOL, V7, DOI [10.3339/fphys.2016.00275, 10.3389/fphys.2016.00275]
  2. [Anonymous], 2019, WORLD MALARIA REPORT, V2019th
  3. Arnou B, 2011, BIOCHEM SOC T, V39, P823, DOI 10.1042/BST0390823
  4. Azouaoui H, 2017, J BIOL CHEM, V292, P7954, DOI 10.1074/jbc.M116.751487
  5. Azouaoui H, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0112176
  6. Bai L, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-12191-9
  7. Jimenez-Diaz MB, 2014, P NATL ACAD SCI USA, V111, pE5455, DOI 10.1073/pnas.1414221111
  8. Bisio H, 2019, NAT MICROBIOL, V4, P420, DOI 10.1038/s41564-018-0339-8
  9. Bryde S, 2010, J BIOL CHEM, V285, P40562, DOI 10.1074/jbc.M110.139543
  10. Burrows JN, 2017, MALARIA J, V16, DOI 10.1186/s12936-016-1675-x
  11. Bushell E, 2017, CELL, V170, P260, DOI 10.1016/j.cell.2017.06.030
  12. Cardi D, 2010, J BIOL CHEM, V285, P26406, DOI 10.1074/jbc.M109.090340
  13. Coleman JA, 2011, J BIOL CHEM, V286, P17205, DOI 10.1074/jbc.M111.229419
  14. Coleman JA, 2009, J BIOL CHEM, V284, P32670, DOI 10.1074/jbc.M109.047415
  15. Costa SR, 2016, BIOCHEM J, V473, P1605, DOI 10.1042/BCJ20160207
  16. Cowell AN, 2018, SCIENCE, V359, P191, DOI 10.1126/science.aan4472
  17. David-Bosne S, 2013, FEBS J, V280, P5419, DOI 10.1111/febs.12244
  18. Ebrahimzadeh Z, 2018, INT J PARASITOL, V48, P13, DOI 10.1016/j.ijpara.2017.08.015
  19. Eckstein-Ludwig U, 2003, NATURE, V424, P957, DOI 10.1038/nature01813
  20. Feller SE, 2000, J PHYS CHEM B, V104, P7510, DOI 10.1021/jp0007843
  21. Fiser A, 2003, METHOD ENZYMOL, V374, P461, DOI 10.1016/S0076-6879(03)74020-8
  22. Fujita H, 2010, MOL BIOL CELL, V21, P2045, DOI 10.1091/mbc.E09-12-1060
  23. Gao H, 2018, CURR BIOL, V28, P2763, DOI 10.1016/j.cub.2018.06.069
  24. Garcia-Sanchez S, 2014, BIOCHEM J, V459, P83, DOI 10.1042/BJ20131318
  25. Gosling R, 2016, PLOS MED, V13, DOI 10.1371/journal.pmed.1001994
  26. Gulati S, 2015, CELL HOST MICROBE, V18, P371, DOI 10.1016/j.chom.2015.08.003
  27. He YL, 2020, PROTEIN CELL, V11, P458, DOI 10.1007/s13238-020-00712-y
  28. Hiraizumi M, 2019, SCIENCE, V365, P1149, DOI 10.1126/science.aay3353
  29. Huang W, 2016, MBIO, V7, DOI 10.1128/mBio.00478-16
  30. Jacquot A, 2012, J BIOL CHEM, V287, P13249, DOI 10.1074/jbc.M111.313916
  31. Jidenko M, 2006, PROTEIN EXPRES PURIF, V48, P32, DOI 10.1016/j.pep.2006.03.001
  32. Juge N, 2015, P NATL ACAD SCI USA, V112, P3356, DOI 10.1073/pnas.1417102112
  33. Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436
  34. Kenthirapalan S, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10519
  35. Kim J, 2019, NATURE, V576, P315, DOI 10.1038/s41586-019-1795-x
  36. Kirk K, 2015, ANNU REV MICROBIOL, V69, P341, DOI 10.1146/annurev-micro-091014-104506
  37. Kubala MH, 2010, PROTEIN SCI, V19, P2389, DOI 10.1002/pro.519
  38. Lenoir G, 2002, BBA-BIOMEMBRANES, V1560, P67, DOI 10.1016/S0005-2736(01)00458-8
  39. Martin RE, 2020, BIOL REV, V95, P305, DOI 10.1111/brv.12565
  40. McKenna MJ, 2020, SCIENCE, V369, P1583, DOI 10.1126/science.abc5809
  41. McNamara CW, 2013, NATURE, V504, P248, DOI 10.1038/nature12782
  42. Molbaek K, 2020, MICROB CELL FACT, V19, DOI 10.1186/s12934-020-01437-7
  43. Nakanishi H, 2020, CELL REP, V32, DOI 10.1016/j.celrep.2020.108208
  44. Nakanishi H, 2020, J BIOL CHEM, V295, P10180, DOI 10.1074/jbc.RA120.014144
  45. Palmgren MG, 2011, ANNU REV BIOPHYS, V40, P243, DOI 10.1146/annurev.biophys.093008.131331
  46. Paulusma CC, 2008, HEPATOLOGY, V47, P268, DOI 10.1002/hep.21950
  47. Paulusma CC, 2010, FEBS LETT, V584, P2708, DOI 10.1016/j.febslet.2010.04.071
  48. Pettersen EF, 2004, J COMPUT CHEM, V25, P1605, DOI 10.1002/jcc.20084
  49. Poulsen LR, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms8649
  50. Qureshi AA, 2020, NATURE, V578, P321, DOI 10.1038/s41586-020-1963-z
  51. Rodriguez-Banqueri A, 2016, J GEN PHYSIOL, V147, P353, DOI 10.1085/jgp.201511510
  52. Timcenko M, 2019, NATURE, V571, P366, DOI 10.1038/s41586-019-1344-7
  53. Tone T, 2020, FEBS LETT, V594, P412, DOI 10.1002/1873-3468.13629
  54. Tsirigos KD, 2015, NUCLEIC ACIDS RES, V43, pW401, DOI 10.1093/nar/gkv485
  55. van Veen S, 2020, NATURE, V578, P419, DOI 10.1038/s41586-020-1968-7
  56. Weiner J, 2016, MICROB CELL, V3, P380, DOI 10.15698/mic2016.10.534
  57. Zhang M, 2018, SCIENCE, V360, P506, DOI 10.1126/science.aap7847