Novel Molecular Pathways Elicited by Mutant FGFR2 May Account for Brain Abnormalities in Apert Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
YEH, Erika
FANGANIELLO, Roberto D.
SUNAGA, Daniele Y.
ZHOU, Xueyan
HOLMES, Gregory
ROCHA, Katia M.
WANG, Yingli
JABS, Ethylin W.
Citação
PLOS ONE, v.8, n.4, article ID e60439, 7p, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Apert syndrome (AS), the most severe form craniosynostosis, is characterized by premature fusion of coronal sutures. Approximately 70% of AS patients carry S252W gain-of-function mutation in FGFR2. Besides the cranial phenotype, brain dysmorphologies are present and are not seen in other FGFR2-asociated craniosynostosis, such as Crouzon syndrome (CS). Here, we hypothesized that S252W mutation leads not only to overstimulation of FGFR2 downstream pathway, but likewise induces novel pathological signaling. First, we profiled global gene expression of wild-type and S252W periosteal fibroblasts stimulated with FGF2 to activate FGFR2. The great majority (92%) of the differentially expressed genes (DEGs) were divergent between each group of cell populations and they were regulated by different transcription factors. We than compared gene expression profiles between AS and CS cell populations and did not observe correlations. Therefore, we show for the first time that S252W mutation in FGFR2 causes a unique cell response to FGF2 stimulation. Since our gene expression results suggested that novel signaling elicited by mutant FGFR2 might be associated with central nervous system (CNS) development and maintenance, we next investigated if DEGs found in AS cells were also altered in the CNS of an AS mouse model. Strikingly, we validated Strc (stereocilin) in newborn Fgfr2(S252W/+) mouse brain. Moreover, immunostaining experiments suggest a role for endothelial cells and cerebral vasculature in the establishment of characteristic CNS dysmorphologies in AS that has not been proposed by previous literature. Our approach thus led to the identification of new target genes directly or indirectly associated with FGFR2 which are contributing to the pathophysiology of AS.
Palavras-chave
Referências
  1. Agochukwu NB, 2012, CHILD NERV SYST, V28, P1447, DOI 10.1007/s00381-012-1756-2
  2. Aldridge K, 2010, DEV DYNAM, V239, P987, DOI 10.1002/dvdy.22218
  3. BASILICO C, 1992, ADV CANCER RES, V59, P115, DOI 10.1016/S0065-230X(08)60305-X
  4. Boilly B, 2000, CYTOKINE GROWTH F R, V11, P295, DOI 10.1016/S1359-6101(00)00014-9
  5. CHADI G, 1993, EXP BRAIN RES, V97, P145
  6. COHEN MM, 1994, J CRAN GENET DEV BIO, V14, P153
  7. COHEN MM, 1992, CLIN GENET, V41, P12
  8. COHEN MM, 1990, AM J MED GENET, V35, P36, DOI 10.1002/ajmg.1320350108
  9. COHEN MM, 1993, AM J MED GENET, V45, P758, DOI 10.1002/ajmg.1320450618
  10. Cohen MMMRE, 2000, CRANIOSYNOSTOSIS DIA
  11. DELEON DD, 1987, BIOL REPROD, V37, P1066, DOI 10.1095/biolreprod37.5.1066
  12. ECKENSTEIN F, 1991, ANN NY ACAD SCI, V638, P348, DOI 10.1111/j.1749-6632.1991.tb49045.x
  13. ECKENSTEIN FP, 1994, J NEUROBIOL, V25, P1467
  14. Emoto N, 1989, Growth Factors, V2, P21, DOI 10.3109/08977198909069078
  15. Fanganiello RD, 2007, MOL MED, V13, P422, DOI 10.2119/2007-00027.Fanganiello
  16. Hart AW, 2000, NATURE, V408, P864
  17. Hong FX, 2006, BIOINFORMATICS, V22, P2825, DOI 10.1093/bioinformatics/btl476
  18. Ibrahimi OA, 2004, HUM MOL GENET, V13, P2313, DOI 10.1093/hmg/ddh235
  19. Johnson D, 2011, EUR J HUM GENET, V19, P369, DOI 10.1038/ejhg.2010.235
  20. Cohen M M Jr, 1991, Neurosurg Clin N Am, V2, P565
  21. Legeai-Mallet L, 1998, J BIOL CHEM, V273, P13007, DOI 10.1074/jbc.273.21.13007
  22. Mangasarian K, 1997, J CELL PHYSIOL, V172, P117, DOI 10.1002/(SICI)1097-4652(199707)172:1<117::AID-JCP13>3.0.CO;2-9
  23. Mansukhani A, 2005, J CELL BIOL, V168, P1065, DOI 10.1083/jcb.200409182
  24. Moloney DM, 1996, NAT GENET, V13, P48, DOI 10.1038/ng0596-48
  25. NEILSON KM, 1995, J BIOL CHEM, V270, P26037
  26. Passos-Bueno Maria Rita, 2008, V12, P107, DOI 10.1159/0000115035
  27. Quintero-Rivera F, 2006, AM J MED GENET A, V140A, P1337, DOI 10.1002/ajmg.a.31277
  28. Raybaud C, 2007, CHILD NERV SYST, V23, P1379, DOI 10.1007/s00381-007-0474-7
  29. Renier D, 2000, CHILD NERV SYST, V16, P645, DOI 10.1007/s003810000320
  30. Saeys Y, 2007, BIOINFORMATICS, V23, P2507, DOI 10.1093/bioinformatics/btm344
  31. Sahni M, 1999, GENE DEV, V13, P1361, DOI 10.1101/gad.13.11.1361
  32. Tusher VG, 2001, P NATL ACAD SCI USA, V98, P5116, DOI 10.1073/pnas.091062498
  33. Vandesompele J, 2002, GENOME BIOL, P3
  34. Verpy E, 2011, J COMP NEUROL, V519, P194, DOI 10.1002/cne.22509
  35. Verpy E, 2008, NATURE, V456, P255, DOI 10.1038/nature07380
  36. Verpy E, 2001, NAT GENET, V29, P345, DOI 10.1038/ng726
  37. Wang YL, 2005, DEVELOPMENT, V132, P3537, DOI 10.1242/dev.01914
  38. Wettenhall JM, 2004, BIOINFORMATICS, V20, P3705, DOI 10.1093/bioinformatics/bth449
  39. Yacubian-Fernandes A, 2004, J NEURORADIOLOGY, V31, P116, DOI 10.1016/S0150-9861(04)96978-7
  40. Yeh E, STEM CELL REV
  41. Yu K, 2000, P NATL ACAD SCI USA, V97, P14536, DOI 10.1073/pnas.97.26.14536
  42. Zechel S, 2010, NEUROSCIENTIST, V16, P357, DOI 10.1177/1073858410371513