Aerobic exercise training attenuates detrimental effects of cigarette smoke exposure on peripheral muscle through stimulation of the Nrf2 pathway and cytokines: a time-course study in mice

Nenhuma Miniatura disponível
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
CANADIAN SCIENCE PUBLISHING
Autores
TOLEDO-ARRUDA, Alessandra C.
SOUSA NETO, Ivo Vieira de
VIEIRA, Rodolfo P.
GUARNIER, Flavia A.
CALEMAN-NETO, Agostinho
CECCHINI, Rubens
PRADO, Carla M.
Citação
APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, v.45, n.9, p.978-986, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cigarette smoke (CS) exposure reduces skeletal muscle function; however, the mechanisms involved have been poorly investigated. The current study evaluated the temporal effects of aerobic exercise training on oxidant and antioxidant systems as well as inflammatory markers in skeletal muscle of mice exposed to CS. Mice were randomly allocated to control, exercise, smoke, and smoke+exercise groups and 3 time points (4, 8, and 12 weeks; n = 12 per group). Exercise training and CS exposure were performed for 30 min/day, twice a day, 5 days/week for 4, 8, and 12 weeks. Aerobic exercise improved functional capacity and attenuated the increase in the cachexia index induced by CS exposure after 12 weeks. Concomitantly, exercise training downregulated tumor necrosis factor a concentration, glutathione oxidation, and messenger RNA (mRNA) expression of Keap1 (P < 0.01) and upregulated interleukin 10 concentration, total antioxidant capacity, and mRNA expression of Nrf2, Gsr, and Txn1 (P < 0.01) in muscle. Exercise increased mRNA expression of Hmox1 compared with the control after 12 weeks (P < 0.05). There were no significant differences between smoke groups for superoxide dismutase activity and Hmox1 mRNA expression. Exercise training improved the ability of skeletal muscle to adequately upregulate key antioxidant and anti-inflammatory defenses to detoxify electrophilic compounds induced by CS exposure, and these effects were more pronounced after 12 weeks. Novelty Exercise attenuates oxidative stress in skeletal muscle from animals exposed to CS via Nrf2 and glutathione pathways. Exercise is a helpful tool to control the inflammatory balance in skeletal muscle from animals exposed to CS. These beneficial effects were evident after 12 weeks.
Palavras-chave
cigarette smoke, exercise, anti-inflammatory, skeletal muscle, oxidative stress, Nrf2
Referências
  1. Alayunt ON, 2019, AN ACAD BRAS CIENC, V91, DOI 10.1590/0001-3765201920181235
  2. Barnes PJ, 2016, J ALLERGY CLIN IMMUN, V138, P16, DOI 10.1016/j.jaci.2016.05.011
  3. Batista ML, 2010, CYTOKINE, V49, P102, DOI 10.1016/j.cyto.2009.10.007
  4. Bowen TS, 2017, MED SCI SPORT EXER, V49, P879, DOI 10.1249/MSS.0000000000001195
  5. Brunnquell CR, 2015, INT J EXP PATHOL, V96, P140, DOI 10.1111/iep.12121
  6. Calegari L, 2018, BRAZ J PHYS THER, V22, P154, DOI 10.1016/j.bjpt.2017.09.004
  7. Caron MA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066433
  8. Chey S, 2011, ANAL BIOCHEM, V411, P164, DOI 10.1016/j.ab.2010.11.020
  9. Cho HY, 2010, TOXICOL APPL PHARM, V244, P43, DOI 10.1016/j.taap.2009.07.024
  10. DAS KC, 1995, MOL CELL BIOCHEM, V148, P45, DOI 10.1007/BF00929502
  11. Dawson NJ, 2017, J EXP BIOL, V220, P3162, DOI 10.1242/jeb.159475
  12. de Oca MM, 2008, CHEST, V133, P13, DOI 10.1378/chest.07-1592
  13. de Sousa CV, 2017, SPORTS MED, V47, P277, DOI 10.1007/s40279-016-0566-1
  14. Degens H, 2015, AM J RESP CRIT CARE, V191, P620, DOI 10.1164/rccm.201410-1830PP
  15. Done AJ, 2016, REDOX BIOL, V10, P191, DOI 10.1016/j.redox.2016.10.003
  16. Durigan JLQ, 2009, BRAZ J MED BIOL RES, V42, P339, DOI 10.1590/S0100-879X2009000400005
  17. Filomeni G, 2002, FASEB J, V16, P64, DOI 10.1096/fj.02-0105fje
  18. FLECHA BG, 1991, FREE RADICAL BIO MED, V10, P93
  19. Glass DJ, 2005, INT J BIOCHEM CELL B, V37, P1974, DOI 10.1016/j.biocel.2005.04.018
  20. Gosker HR, 2009, AM J RESP CELL MOL, V40, P710, DOI 10.1165/rcmb.2008-0312OC
  21. Guadagnin E, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19082265
  22. Guarnier FA, 2010, MUSCLE NERVE, V42, P950, DOI 10.1002/mus.21798
  23. Harvey CJ, 2009, FREE RADICAL BIO MED, V46, P443, DOI 10.1016/j.freeradbiomed.2008.10.040
  24. Hitomi Y, 2008, REDOX REP, V13, P213, DOI 10.1179/135100008X308894
  25. Hollander J, 1999, AM J PHYSIOL-REG I, V277, pR856
  26. Kobayashi A, 2004, MOL CELL BIOL, V24, P7130, DOI 10.1128/MCB.24.16.7130-7139.2004
  27. Konishi H, 2010, VASC MED, V15, P47, DOI 10.1177/1358863X09106326
  28. Kruger K, 2015, AM J PHYSIOL-LUNG C, V309, pL119, DOI 10.1152/ajplung.00074.2015
  29. Kruger K, 2018, AM J PHYSIOL-REG I, V314, pE366, DOI 10.1152/ajpregu.00316.2017
  30. Kumar R, 2011, J ETHNOPHARMACOL, V136, P260, DOI 10.1016/j.jep.2011.04.040
  31. Li WG, 2008, BIOCHEM PHARMACOL, V76, P1485, DOI 10.1016/j.bcp.2008.07.017
  32. MARKLUND S, 1974, EUR J BIOCHEM, V47, P469
  33. Merry TL, 2016, J PHYSIOL-LONDON, V594, P5195, DOI 10.1113/JP271957
  34. Messier EM, 2013, CELL DEATH DIS, V4, DOI 10.1038/cddis.2013.96
  35. National Research Council, 1998, GUID CAR US LAB AN
  36. Nguyen T, 2009, J BIOL CHEM, V284, P13291, DOI 10.1074/jbc.R900010200
  37. Nogueira JE, 2018, FREE RADICAL BIO MED, V129, P186, DOI 10.1016/j.freeradbiomed.2018.09.028
  38. Oliveira FJD, 2000, J PARASITOL, V86, P1067, DOI 10.1645/0022-3395(2000)086[1067:OSOLIH]2.0.CO;2
  39. Radak Z, 2000, ARCH BIOCHEM BIOPHYS, V383, P114, DOI 10.1006/abbi.2000.2042
  40. Rahman I, 2006, EUR RESPIR J, V28, P219, DOI 10.1183/09031936.06.00053805
  41. Ramos GV, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/5909053
  42. Sarady JK, 2002, AM J RESP CELL MOL, V27, P739, DOI 10.1165/rcmb.4816
  43. Suzuki M, 2008, AM J RESP CELL MOL, V39, P673, DOI 10.1165/rcmb.2007-0424OC
  44. Thimmulappa RK, 2002, CANCER RES, V62, P5196
  45. TIETZE F, 1969, ANAL BIOCHEM, V27, P502, DOI 10.1016/0003-2697(69)90064-5
  46. Toledo AC, 2012, EUR RESPIR J, V39, P254, DOI 10.1183/09031936.00003411
  47. Toledo-Arruda AC, 2017, J APPL PHYSIOL, V123, P674, DOI 10.1152/japplphysiol.00819.2016
  48. Valavanidis A, 2009, INT J ENV RES PUB HE, V6, P445, DOI 10.3390/ijerph6020445
  49. Vieira RP, 2007, AM J RESP CRIT CARE, V176, P871, DOI 10.1164/rccm.200610-1567OC
  50. Willis D, 2000, J PATHOL, V190, P627