Investigation of the Anti-Leishmania (Leishmania) infantum Activity of Some Natural Sesquiterpene Lactones

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI AG
Autores
WULSTEN, Imke E.
COSTA-SILVA, Thais A.
MESQUITA, Juliana T.
GALUPPO, Mariana K.
TANIWAKI, Noemi N.
BORBOREMA, Samanta E. T.
COSTA, Fernando B. Da
SCHMIDT, Thomas J.
TEMPONE, Andre G.
Citação
MOLECULES, v.22, n.5, article ID 685, 12p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Leishmaniases are neglected infectious diseases caused by parasites of the 'protozoan' genus Leishmania. Depending on the parasite species, different clinical forms are known as cutaneous, muco-cutaneous, and the visceral leishmaniasis (VL). VL is particularly fatal and the therapy presents limitations. In the search for new anti-leishmanial hit compounds, seven natural sesquiterpene lactones were evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum, a pathogen causing VL. The pseudoguaianolides mexicanin I and helenalin acetate demonstrated the highest selectivity and potency against intracellular amastigotes. In addition, promastigotes treated with helenalin acetate were subject to an ultrastructural and biochemical investigation. The lethal action of the compound was investigated by fluorescence-activated cell sorting and related techniques to detect alterations in reactive oxygen species (ROS) content, plasma membrane permeability, and mitochondrial membrane potential. Helenalin acetate significantly reduced the mitochondrial membrane potential and the mitochondrial structural damage was also confirmed by transmission electron microscopy, displaying an intense organelle swelling. No alteration of plasma membrane permeability or ROS content could be detected. Additionally, helenalin acetate significantly increased the production of nitric oxide in peritoneal macrophages, probably potentiating the activity against the intracellular amastigotes. Helenalin acetate could hence be a useful anti-leishmanial scaffold for further optimization studies.
Palavras-chave
sesquiterpene lactones, pseudoguaianolides, helenalin acetate, mexicanin I, Leishmania (L.) infantum, drugs, nitric oxide
Referências
  1. Barrera P, 2013, EVID-BASED COMPL ALT, DOI 10.1155/2013/163404
  2. Barrera PA, 2008, J PARASITOL, V94, P1143, DOI 10.1645/GE-1501.1
  3. Brengio SD, 2000, J PARASITOL, V86, P407, DOI 10.1645/0022-3395(2000)086[0407:TSLDDA]2.0.CO;2
  4. Carvalho L, 2010, ANTIMICROB AGENTS CH, V54, P5344, DOI 10.1128/AAC.00790-10
  5. Croft SL, 2011, CLIN MICROBIOL INFEC, V17, P1478, DOI 10.1111/j.1469-0691.2011.03630.x
  6. de Freitas EO, 2016, FRONT IMMUNOL, V7, DOI 10.3389/fimmu.2016.00153
  7. DUARTE MIS, 1992, ULTRASTRUCT PATHOL, V16, P475
  8. Edinger AL, 2004, CURR OPIN CELL BIOL, V16, P663, DOI 10.1016/j.ceb.2004.09.011
  9. GIORDANO OS, 1990, J NAT PROD, V53, P803, DOI 10.1021/np50070a004
  10. GRIMALDI G, 1993, CLIN MICROBIOL REV, V6, P230
  11. Hamzeloo-Moghadam M, 2015, TUMOR BIOL, V36, P1191, DOI 10.1007/s13277-014-2744-9
  12. Iniesta V, 2005, INFECT IMMUN, V73, P6085, DOI 10.1128/IAI.73.9.6085-6090.2005
  13. Iniesta V, 2002, PARASITE IMMUNOL, V24, P113, DOI 10.1046/j.1365-3024.2002.00444.x
  14. Jimenez-Ortiz V, 2005, J PARASITOL, V91, P170, DOI 10.1645/GE-3373
  15. Kowaltowski AJ, 1999, FREE RADICAL BIO MED, V26, P463, DOI 10.1016/S0891-5849(98)00216-0
  16. KUPCHAN SM, 1971, J MED CHEM, V14, P1147, DOI 10.1021/jm00294a001
  17. LAINSON R, 1978, NATURE, V273, P595, DOI 10.1038/273595a0
  18. Lezama-Davila CM, 2008, IMMUNOL CELL BIOL, V86, P539, DOI 10.1038/icb.2008.39
  19. Martino R, 2015, TOXICOL IN VITRO, V29, P1529, DOI 10.1016/j.tiv.2015.06.011
  20. Mehta A, 2004, J BIOL CHEM, V279, P11798, DOI 10.1074/jbc.M309341200
  21. Mesquita JT, 2014, MOL CELL BIOCHEM, V389, P293, DOI 10.1007/s11010-013-1954-6
  22. Mills CD, 2000, J IMMUNOL, V164, P6166
  23. Moore E M, 2010, J Glob Infect Dis, V2, P151, DOI 10.4103/0974-777X.62883
  24. Newman DJ, 2012, J NAT PROD, V75, P311, DOI 10.1021/np200906s
  25. Ordonez PE, 2016, J NAT PROD, V79, P691, DOI 10.1021/acs.jnatprod.5b00383
  26. Perry SW, 2011, BIOTECHNIQUES, V50, P98, DOI 10.2144/000113610
  27. Pinto EG, 2013, EXP PARASITOL, V135, P655, DOI 10.1016/j.exppara.2013.09.016
  28. ROBLES M, 1995, PLANTA MED, V61, P199
  29. RODRIGUEZ E, 1976, PHYTOCHEMISTRY, V15, P1573, DOI 10.1016/S0031-9422(00)97430-2
  30. Luque-Ortega JR, 2010, METHODS MOL BIOL, V618, P393, DOI 10.1007/978-1-60761-594-1_25
  31. Schmidt TJ, 2012, CURR MED CHEM, V19, P2128
  32. Schmidt TJ, 2012, CURR MED CHEM, V19, P2176
  33. Schmidt TJ, 2014, ANTIMICROB AGENTS CH, V58, P325, DOI 10.1128/AAC.01263-13
  34. Schmidt TJ, 2009, MOLECULES, V14, P2062, DOI 10.3390/molecules14062062
  35. Schmidt TJ, 2002, PLANTA MED, V68, P750, DOI 10.1055/s-2002-33799
  36. Sen R, 2011, PHYTOMEDICINE, V18, P1056, DOI 10.1016/j.phymed.2011.03.004
  37. Shao FY, 2016, ONCOTARGET, V7, P6790, DOI 10.18632/oncotarget.6828
  38. TADA H, 1986, J IMMUNOL METHODS, V93, P157, DOI 10.1016/0022-1759(86)90183-3
  39. Tempone AG, 2011, PLANTA MED, V77, P572, DOI 10.1055/s-0030-1250663
  40. Tiuman TS, 2014, BMC MICROBIOL, V14, DOI 10.1186/1471-2180-14-152
  41. VanHellemond JJ, 1997, PARASITOLOGY, V114, P351, DOI 10.1017/S0031182096008591
  42. World Health Organization (WHO), 17 NEGL TROP DIS
  43. ZILBERSTEIN D, 1985, P NATL ACAD SCI USA, V82, P1716, DOI 10.1073/pnas.82.6.1716