Membrane-derived particles shed by PSMA-positive cells function as pro-angiogenic stimuli in tumors

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
SKUBAL, Magdalena
HAEDICKE, Katja
SILVA, Fabio P.
STATER, Evan P.
SILVA, Thais L. A. de O.
COSTA, Erico T.
MASOTTI, Cibele
Citação
JOURNAL OF CONTROLLED RELEASE, v.364, p.312-325, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cell membrane-derived particles (Mp) are rounded membrane-enclosed particles that are shed from tumor cells. Mp are formed from tumor membranes and are capable of tumor targeting and immunotherapeutic agents because they share membrane homology with parental cells; thus, they are under consideration as a drug de-livery vehicle. Prostate-specific membrane antigen (PSMA), a transmembrane glycoprotein with enzymatic functionality, is highly expressed in Mp and extracellular vesicles (EV) from prostate cancer (PCa) with poor clinical prognosis. Although PSMA expression was previously shown in EV and Mp isolated from cell lines and from the blood of patients with high-grade PCa, no pathophysiological effects have been linked to PCa-derived Mp. Here, we compared Mp from PSMA-expressing (PSMA-Mp) and PSMA-non-expressing (WT-Mp) cells side by side in vitro and in vivo. PSMA-Mp can transfer PSMA and new phenotypic characteristics to the tumor micro -environment. The consequence of PSMA transfer to cells and increased secretion of vascular endothelial growth factor-A (VEGF-A), pro-angiogenic and pro-lymphangiogenic mediators, with increased 4E binding protein 1 (4EBP-1) phosphorylation.
Palavras-chave
PSMA, PSMA-cell-membrane derived particles, VEGF-A, Angiogenesis, Angiogenin, Microenvironment
Referências
  1. Abid R, 2004, ARTERIOSCL THROM VAS, V24, P294, DOI 10.1161/01.ATV.0000110502.10593.06
  2. Antonarakis ES, 2012, EXPERT OPIN THER TAR, V16, P365, DOI 10.1517/14728222.2012.668887
  3. Barrientos S, 2008, WOUND REPAIR REGEN, V16, P585, DOI 10.1111/j.1524-475X.2008.00410.x
  4. Bordas M, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21155586
  5. Brakenhielm E, 2007, INT J CANCER, V121, P2153, DOI 10.1002/ijc.22900
  6. Caromile LA, 2017, MOL CELL ONCOL, V4, DOI 10.1080/23723556.2017.1321168
  7. Caromile LA, 2017, SCI SIGNAL, V10, DOI 10.1126/scisignal.aag3326
  8. Chen XG, 2015, MOL CARCINOGEN, V54, P1086, DOI 10.1002/mc.22177
  9. Chen Y, 2009, BIOCHEM BIOPH RES CO, V390, P624, DOI 10.1016/j.bbrc.2009.10.017
  10. Corliss BA, 2016, MICROCIRCULATION, V23, P95, DOI 10.1111/micc.12259
  11. Dikov D, 2015, PROSTATE, V75, P1074, DOI 10.1002/pros.22991
  12. Fu LQ, 2020, CELL IMMUNOL, V353, DOI 10.1016/j.cellimm.2020.104119
  13. Gaceb A, 2018, J CEREBR BLOOD F MET, V38, P45, DOI 10.1177/0271678X17719645
  14. Gangadaran P, 2023, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.1085057
  15. García-Silva S, 2021, NAT CANCER, V2, P1387, DOI 10.1038/s43018-021-00272-y
  16. Haedicke K, 2020, NAT BIOMED ENG, V4, P286, DOI 10.1038/s41551-020-0527-8
  17. Hirakawa S, 2005, J EXP MED, V201, P1089, DOI 10.1084/jem.20041896
  18. Hoxhaj G, 2020, NAT REV CANCER, V20, P74, DOI 10.1038/s41568-019-0216-7
  19. Hu Y, 2022, J NANOBIOTECHNOL, V20, DOI 10.1186/s12951-022-01358-0
  20. Hupe MC, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00623
  21. Huth HW, 2017, ONCOL REP, V37, P2497, DOI 10.3892/or.2017.5452
  22. Jansen BHE, 2021, EUR J NUCL MED MOL I, V48, P509, DOI 10.1007/s00259-020-04974-w
  23. Jeppesen DK, 2023, TRENDS CELL BIOL, V33, P667, DOI 10.1016/j.tcb.2023.01.002
  24. Joncas FH, 2019, PROSTATE, V79, P1767, DOI 10.1002/pros.23901
  25. Kaittanis C, 2018, J EXP MED, V215, P159, DOI 10.1084/jem.20171052
  26. Kamel MG, 2020, UROL INT, V104, P699, DOI 10.1159/000505410
  27. Kim HS, 2021, ADV MATER, V33, DOI 10.1002/adma.202101558
  28. Krishn SR, 2019, MATRIX BIOL, V77, P41, DOI 10.1016/j.matbio.2018.08.004
  29. Lewis JS, 2000, J PATHOL, V192, P150, DOI 10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G
  30. Lilis I, 2018, UROL ONCOL-SEMIN ORI, V36, DOI 10.1016/j.urolonc.2018.02.007
  31. Linde N, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02481-5
  32. Liu ZQ, 2015, INT J CLIN EXP MED, V8, P2289
  33. Musa J, 2016, ONCOGENE, V35, P4675, DOI 10.1038/onc.2015.515
  34. Nalairndran G, 2020, J CELL MOL MED, V24, P12188, DOI 10.1111/jcmm.15876
  35. Nojima S, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-09117-0
  36. Null M., 2023, Anatomy, Lymphatic system
  37. Padda RS, 2019, PROSTATE, V79, P592, DOI 10.1002/pros.23764
  38. Rolny C, 2006, BLOOD, V108, P1877, DOI 10.1182/blood-2006-04-014894
  39. Schoppmann SF, 2002, AM J PATHOL, V161, P947, DOI 10.1016/S0002-9440(10)64255-1
  40. Shimura S, 2000, CANCER RES, V60, P5857
  41. Tamma R, 2019, UROL ONCOL-SEMIN ORI, V37, DOI 10.1016/j.urolonc.2019.01.025
  42. Tang ZF, 2017, NUCLEIC ACIDS RES, V45, pW98, DOI 10.1093/nar/gkx247
  43. Tao QY, 2022, TOXICOL APPL PHARM, V440, DOI 10.1016/j.taap.2022.115927
  44. Ugorski M, 2016, AM J CANCER RES, V6, P370
  45. van der Kroef M, 2020, J AUTOIMMUN, V111, DOI 10.1016/j.jaut.2020.102444
  46. Watanabe R, 2021, PROSTATE, V81, P1390, DOI 10.1002/pros.24237
  47. Yang ZG, 2020, NAT BIOMED ENG, V4, P69, DOI 10.1038/s41551-019-0485-1
  48. Zhan P, 2013, TRANSL ANDROL UROL, V2, P99, DOI 10.3978/j.issn.2223-4683.2013.06.03
  49. Zhang LY, 2020, CURR TOP MED CHEM, V20, P2472, DOI 10.2174/1568026620666200922113054
  50. Zhou Y, 2021, FRONT CARDIOVASC MED, V8, DOI 10.3389/fcvm.2021.738325
  51. Zipkin M, 2019, NAT BIOTECHNOL, V37, P1395, DOI 10.1038/s41587-019-0326-5