Surface Topography Obtained with High Throughput Technology for hiPSC-Derived Cardiomyocyte Conditioning

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorCORTELLA, Lucas R. X.
dc.contributor.authorCESTARI, I. A.
dc.contributor.authorS, M.
dc.contributor.authorMAZZETTO, M.
dc.contributor.authorLASAGNI, A. F.
dc.contributor.authorCESTARI, Ismar N.
dc.date.accessioned2022-11-25T13:49:46Z
dc.date.available2022-11-25T13:49:46Z
dc.date.issued2022
dc.description.abstractThe use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) to replace myocardial tissue after an infarct holds great promises. However, hiPSC-CM are phenotypically immature when compared to cells in the adult heart, hampering their clinical application. We aimed to develop and test a surface structuring technique that would improve hiPSC-CM structural maturation. Laser ablation was used to fabricate a micron-pattern on polyurethane surface and evaluated cell morphology, orientation and F-actin assemblage to detect phenotypic changes in response to the microtopography. This topography positively influenced cell morphology regarding to spreading area and elongation, and hiPSC-CM orientation, improving their structural maturation. The methodology thus presented has relatively low cost and is easily scalable, making it relevant for high-throughput applications such as drug screening for the pharma industry.eng
dc.description.conferencedateOCT 26-30, 2020
dc.description.conferencelocalELECTR NETWORK
dc.description.conferencename27th Brazilian Congress on Biomedical Engineering (CBEB)
dc.description.indexPubMedeng
dc.description.sponsorshipFAPESP [12/50283-6]
dc.description.sponsorshipFinep [1253/13]
dc.description.sponsorshipNational Council for Scientific and Research Development-CNPq [467270/2014-7, 311191/2017-7]
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.identifier.citationXXVII BRAZILIAN CONGRESS ON BIOMEDICAL ENGINEERING, CBEB 2020, p.119-126, 2022
dc.identifier.doi10.1007/978-3-030-70601-2_20
dc.identifier.isbn978-3-030-70601-2; 978-3-030-70600-5
dc.identifier.issn1680-0737
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/50344
dc.language.isoeng
dc.publisherSPRINGEReng
dc.relation.ispartofXxvii Brazilian Congress on Biomedical Engineering, Cbeb 2020
dc.relation.ispartofseriesIFMBE Proceedings
dc.rightsrestrictedAccesseng
dc.rights.holderCopyright SPRINGEReng
dc.subjecthiPSC-CMeng
dc.subjectCardiomyocyteseng
dc.subjectSurface topographyeng
dc.subjectDirect laser interference patterningeng
dc.subjectPolyurethaneeng
dc.subject.otherstem-celleng
dc.subject.wosEngineering, Biomedicaleng
dc.titleSurface Topography Obtained with High Throughput Technology for hiPSC-Derived Cardiomyocyte Conditioningeng
dc.typeconferenceObjecteng
dc.type.categoryproceedings papereng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryArgentina
hcfmusp.affiliation.countryAlemanha
hcfmusp.affiliation.countryisoar
hcfmusp.affiliation.countryisode
hcfmusp.author.externalS, M.:Tech Univ Dresden, Inst Mfg Technol, George Baehr Str 3c, D-01069 Dresden, Germany; Univ Nacl Comahue, Dept Electrotecnia, PROBIEN CONICET, Buenos Aires 1400, RA-8300 Neuquen, Argentina
hcfmusp.author.externalLASAGNI, A. F.:Tech Univ Dresden, Inst Mfg Technol, George Baehr Str 3c, D-01069 Dresden, Germany; Fraunhofer Inst Werkstoff & Strahltech IWS, Winterbergstr 28, D-01277 Dresden, Germany
hcfmusp.citation.scopus0
hcfmusp.contributor.author-fmusphcLUCAS RIBEIRO XAVIER CORTELLA
hcfmusp.contributor.author-fmusphcIDAGENE APARECIDA CESTARI
hcfmusp.contributor.author-fmusphcMARCELO MAZZETTO
hcfmusp.contributor.author-fmusphcISMAR NEWTON CESTARI
hcfmusp.description.beginpage119
hcfmusp.description.endpage126
hcfmusp.origemWOS
hcfmusp.origem.scopus2-s2.0-85128894297
hcfmusp.origem.wosWOS:000871993700020
hcfmusp.publisher.cityNEW YORKeng
hcfmusp.publisher.countryUNITED STATESeng
hcfmusp.relation.referenceAcimovic I, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/512831eng
hcfmusp.relation.referenceCortella LRX, 2017, BIOMED MATER, V12, DOI 10.1088/1748-605X/aa8353eng
hcfmusp.relation.referenceEstevam-Alves R, 2016, APPL SURF SCI, V374, P222, DOI 10.1016/j.apsusc.2015.11.119eng
hcfmusp.relation.referenceGherghiceanu M, 2011, J CELL MOL MED, V15, P2539, DOI 10.1111/j.1582-4934.2011.01417.xeng
hcfmusp.relation.referenceHooks DA, 2007, CIRC RES, V101, pE103, DOI 10.1161/CIRCRESAHA.107.161075eng
hcfmusp.relation.referenceLang V, 2016, PROC SPIE, V9736, DOI 10.1117/12.2216203eng
hcfmusp.relation.referenceLangheinrich D, 2012, J POLYM SCI POL PHYS, V50, P415, DOI 10.1002/polb.23017eng
hcfmusp.relation.referenceLiu WH, 2015, CELL TRANSPLANT, V24, P2185, DOI 10.3727/096368914X685113eng
hcfmusp.relation.referenceParker KK, 2007, PHILOS T R SOC B, V362, P1267, DOI 10.1098/rstb.2007.2114eng
hcfmusp.relation.referenceParrag IC, 2012, BIOTECHNOL BIOENG, V109, P813, DOI 10.1002/bit.23353eng
hcfmusp.relation.referenceRibeiro AJS, 2015, P NATL ACAD SCI USA, V112, P12705, DOI 10.1073/pnas.1508073112eng
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublication5c78b7ad-c0a7-4a0d-86da-6cfdf77c1005
relation.isAuthorOfPublication119d81f2-45c3-45e3-b683-868a3382b6e7
relation.isAuthorOfPublication4ccb0720-a57c-4bd3-82bb-a92b52f7a039
relation.isAuthorOfPublication69bf44d7-c261-4ac0-a005-204a04c325de
relation.isAuthorOfPublication.latestForDiscovery5c78b7ad-c0a7-4a0d-86da-6cfdf77c1005
Arquivos