Reassessing the role of milrinone in the treatment of heart failure and pulmonary hypertension in neonates and children: a systematic review and meta-analysis

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
EUROPEAN JOURNAL OF PEDIATRICS, v.183, n.2, p.543-555, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
To evaluate milrinone's impact on pediatric cardiac function, focusing on its specific role as an inotrope and lusitrope, while considering its systemic and pulmonary vasodilatory effects. Search of PubMed, EMBASE, and the Cochrane Library up to August 2023. We included all studies that evaluated milrinone in children under 18 years old in neonatal, pediatric, or cardiac intensive care units. We excluded case reports, studies that did not provide tabular information on milrinone's outcomes, and studies focused on non-intensive care populations. We extracted data on the research design, objectives, study sample, and results of each study, including the impact of milrinone and any associated factors. We screened a total of 9423 abstracts and 41 studies were ultimately included. Milrinone significantly improved left ventricular ejection fraction (WMD 3.41 [95% CI 0.61 - 6.21]), left ventricle shortening fraction (WMD 4.25 [95% CI 3.43 - 5.08]), cardiac index (WMD 0.50 [95% CI 0.32 to 0.68]), left ventricle output (WMD 55.81 [95% CI 4.91 to 106.72]), serum lactate (WMD -0.59 [95% CI -1.15 to -0.02]), and stroke volume index (WMD 2.95 [95% CI 0.09 - 5.82]). However, milrinone was not associated with improvements in ventricular myocardial performance index (WMD -0.01 [95% CI -0.06 to 0.04]) and ventricular longitudinal strain (WMD -2.14 [95% CI -4.56 to 0.28]). Furthermore, milrinone was not associated with isovolumetric relaxation time reduction (WMD -8.87 [95% CI -21.40 to 3.66]).Conclusion: Our meta-analysis suggests potential clinical benefits of milrinone by improving cardiac function, likely driven by its systemic vasodilatory effects. However, questions arise about its inotropic influence and the presence of a lusitropic effect. Moreover, milrinone's pulmonary vasodilatory effect appears relatively weaker compared to its systemic actions. Further research is needed to elucidate milrinone's precise mechanisms and refine its clinical applications in pediatric practice.What is Known:center dot Milrinone is a phosphodiesterase III inhibitor that has been used to treat a variety of pediatric and neonatal conditions.center dot Milrinone is believed to exert its therapeutic effects by enhancing cardiac contractility and promoting vascular relaxation.What is New:center dot Milrinone may not have a significant inotropic effect.center dot Milrinone's pulmonary vasodilatory effect is less robust than its systemic vasodilatory effect.
Palavras-chave
Meta-analysis, Milrinone, Cardiac function, Inotrope, Vasodilator, Pediatrics, Neonates
Referências
  1. Bailey JM, 1999, ANESTHESIOLOGY, V90, P1012, DOI 10.1097/00000542-199904000-00014
  2. Barnwal NK, 2017, ANN CARD ANAESTH, V20, P318, DOI 10.4103/aca.ACA_231_16
  3. Barton P, 1996, CHEST, V109, P1302, DOI 10.1378/chest.109.5.1302
  4. Beshish AG, 2023, CARDIOL YOUNG, V33, P1691, DOI 10.1017/S1047951122003171
  5. Bianchi MO, 2015, SHOCK, V44, P115, DOI 10.1097/SHK.0000000000000388
  6. Cai JM, 2008, ANN THORAC SURG, V86, P882, DOI 10.1016/j.athoracsur.2008.05.014
  7. Cavigelli-Brunner A, 2018, PEDIATR CRIT CARE ME, V19, P619, DOI 10.1097/PCC.0000000000001533
  8. CHANG AC, 1995, CRIT CARE MED, V23, P1907, DOI 10.1097/00003246-199511000-00018
  9. Chen EP, 1998, CIRCULATION, V97, P1606, DOI 10.1161/01.CIR.97.16.1606
  10. Chi CY, 2013, CRIT CARE MED, V41, P1754, DOI 10.1097/CCM.0b013e31828a2a85
  11. Costello JM, 2014, CIRC-HEART FAIL, V7, P596, DOI 10.1161/CIRCHEARTFAILURE.113.001312
  12. DERSIMONIAN R, 1986, CONTROL CLIN TRIALS, V7, P177, DOI 10.1016/0197-2456(86)90046-2
  13. Dillard J, 2022, J PERINATOL, V42, P37, DOI 10.1038/s41372-021-01228-x
  14. Duggal B, 2005, PEDIATR CARDIOL, V26, P642, DOI 10.1007/s00246-005-0881-z
  15. El-Ghandour M, 2020, PEDIATR DRUGS, V22, P685, DOI 10.1007/s40272-020-00412-4
  16. EL-Khuffash AF, 2014, J PEDIATR-US, V165, P46, DOI 10.1016/j.jpeds.2014.03.048
  17. Fan Y, 2013, EUR J CARDIO-THORAC, V43, P1028, DOI 10.1093/ejcts/ezs481
  18. Halliday M, 2017, J MATERN-FETAL NEO M, V30, P529, DOI 10.1080/14767058.2016.1177720
  19. Higgins J, 2011, COCHRANE HDB SYSTEMA
  20. Hoffman TM, 2003, CIRCULATION, V107, P996, DOI 10.1161/01.CIR.0000051365.81920.28
  21. Imam SS, 2022, J CARDIOVASC PHARM, V80, P746, DOI 10.1097/FJC.0000000000001332
  22. James AT, 2015, J PERINATOL, V35, P268, DOI 10.1038/jp.2014.208
  23. James AT, 2016, CARDIOL YOUNG, V26, P90, DOI 10.1017/S1047951114002698
  24. Jothinath K, 2021, ANN CARD ANAESTH, V24, P217, DOI 10.4103/aca.ACA_160_19
  25. Kanazawa T, 2021, J CARDIOTHOR VASC AN, V35, P2073, DOI 10.1053/j.jvca.2021.02.017
  26. Khazin V, 2004, J CARDIOTHOR VASC AN, V18, P156, DOI 10.1053/j.jvca.2004.01.020
  27. Korkmaz L, 2022, AM J PERINAT, V39, P204, DOI 10.1055/s-0040-1715118
  28. Lechner E, 2012, PEDIATR CRIT CARE ME, V13, P542, DOI 10.1097/PCC.0b013e3182455571
  29. Lee J, 2014, KOREAN CIRC J, V44, P320, DOI 10.4070/kcj.2014.44.5.320
  30. Li WJ, 2023, INTERDISC CARDIOV TH, V37, DOI 10.1093/icvts/ivad064
  31. McGowan J, 2016, J CLIN EPIDEMIOL, V75, P40, DOI 10.1016/j.jclinepi.2016.01.021
  32. McNamara PJ, 2013, PEDIATR CRIT CARE ME, V14, P74, DOI 10.1097/PCC.0b013e31824ea2cd
  33. McNamara PJ, 2006, J CRIT CARE, V21, P217, DOI 10.1016/j.jcrc.2006.01.001
  34. Mears M, 2020, AM J PERINAT, V37, P258, DOI 10.1055/s-0039-1678558
  35. Meyer S, 2011, WIEN MED WOCHENSCHR, V161, P184, DOI 10.1007/s10354-011-0869-7
  36. Moher D, 2015, SYST REV-LONDON, V4, DOI [10.1186/2046-4053-4-1, 10.1016/j.ijsu.2010.07.299, 10.1136/bmj.b2700, 10.1371/journal.pmed.1000097, 10.1016/j.ijsu.2010.02.007, 10.1136/bmj.b2535, 10.1136/bmj.i4086]
  37. Momeni M, 2011, J CARDIOTHOR VASC AN, V25, P419, DOI 10.1053/j.jvca.2010.07.004
  38. Nag P, 2023, J CARDIOTHOR VASC AN, V37, P972, DOI 10.1053/j.jvca.2023.01.032
  39. Ouzzani M, 2016, SYST REV-LONDON, V5, DOI 10.1186/s13643-016-0384-4
  40. Paradisis M, 2006, J PEDIATR-US, V148, P306, DOI 10.1016/j.jpeds.2005.11.030
  41. Paradisis M, 2009, J PEDIATR-US, V154, P189, DOI 10.1016/j.jpeds.2008.07.059
  42. Patel N., 2012, J PAEDIAT CHILD H S1, V48, P128
  43. Peiravian F, 2013, IRAN J PEDIATR, V23, P19
  44. Pellicer A, 2013, PEDIATR RES, V73, P95, DOI 10.1038/pr.2012.154
  45. Rahiman S, 2020, CRIT CARE MED, V48, pE1071, DOI 10.1097/CCM.0000000000004622
  46. Shipley JB, 1996, AM J MED SCI, V311, P286, DOI 10.1097/00000441-199606000-00011
  47. Thorlacius EM, 2020, J CARDIOTHOR VASC AN, V34, P2072, DOI 10.1053/j.jvca.2020.02.027
  48. Thorlacius EM, 2019, PEDIATR CRIT CARE ME, V20, P947, DOI 10.1097/PCC.0000000000002017
  49. Wan X, 2014, BMC MED INFORM DECIS, V14, DOI 10.1186/s12911-014-0111-9
  50. Wang SM, 2005, PEDIATR PULM, V39, P219, DOI 10.1002/ppul.20157