Th17/Treg imbalance in COPD progression: A temporal analysis using a CS-induced model

Carregando...
Imagem de Miniatura
Citações na Scopus
36
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.14, n.1, article ID e0209351, 19p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background The imbalance between pro- and anti-inflammatory immune responses plays a pivotal role in chronic obstructive pulmonary disease (COPD) development and progression. To clarify the pathophysiological mechanisms of this disease, we performed a temporal analysis of immune response-mediated inflammatory progression in a cigarette smoke (CS)-induced mouse model with a focus on the balance between Th17 and Treg responses. Methods C57BL/6 mice were exposed to CS for 1, 3 or 6 months to induce COPD, and the control groups were maintained under filtered air conditions for the same time intervals. We then performed functional (respiratory mechanics) and structural (alveolar enlargement) analyses. We also quantified the NF-kappa B, TNF-alpha, CD4, CD8, CD20, IL-17, IL-6, FOXP3, IL-10, or TGF-beta positive cells in peribronchovascular areas and assessed FOXP3 and IL-10 expression through double-label immunofluorescence. Additionally, we evaluated the gene expression of NF-kappa B and TNF in bronchiolar epithelial cells. Results Our CS-induced COPD model exhibited an increased proinflammatory immune response (increased expression of the NF-kappa B, TNF-alpha, CD4, CD8, CD20, IL-17, and IL-6 markers) with a concomitantly decreased anti-inflammatory immune response (FOXP3, IL-10, and TGF-beta markers) compared with the control mice. These changes in the immune responses were associated with increased alveolar enlargement and impaired lung function starting on the first month and third month of CS exposure, respectively, compared with the control mice. Conclusion Our results showed that the microenvironmental stimuli produced by the release of cyto-kines during COPD progression lead to a Th17/Treg imbalance.
Palavras-chave
Referências
  1. Baraldo S, 2008, EUR RESPIR J, V31, P486, DOI 10.1183/09031936.00000608
  2. Barcelo B, 2008, EUR RESPIR J, V31, P555, DOI 10.1183/09031936.00010407
  3. Brereton CF, 2011, J IMMUNOL, V186, P5896, DOI 10.4049/jimmunol.1003789
  4. Brusselle GG, 2011, LANCET, V378, P1015, DOI 10.1016/S0140-6736(11)60988-4
  5. Chen K, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020333
  6. Chen WJ, 2003, CYTOKINE GROWTH F R, V14, P85, DOI 10.1016/S1359-6101(03)00003-0
  7. Chu SY, 2011, INT IMMUNOPHARMACOL, V11, P1780, DOI 10.1016/j.intimp.2011.06.010
  8. Di Stefano A, 2009, CLIN EXP IMMUNOL, V157, P316, DOI 10.1111/j.1365-2249.2009.03965.x
  9. Duan MC, 2016, INFLAMMATION, V39, P1334, DOI 10.1007/s10753-016-0365-8
  10. Eppert BL, 2013, J IMMUNOL, V190, P1331, DOI 10.4049/jimmunol.1202442
  11. Fuke S, 2004, AM J RESP CELL MOL, V31, P405, DOI 10.1165/rcmb.2004.0131OC
  12. GOLD, 2018, GLOBAL STRATEGY DIAG
  13. Gomes RFM, 2000, J APPL PHYSIOL, V89, P908
  14. Gosman MME, 2006, EUR RESPIR J, V27, P60, DOI 10.1183/09031936.06.00007005
  15. HANTOS Z, 1992, J APPL PHYSIOL, V72, P168
  16. Hiemstra PS, 2015, EUR RESPIR J, V45, P1150, DOI 10.1183/09031936.00141514
  17. Hizume DC, 2012, RESP PHYSIOL NEUROBI, V181, P167, DOI 10.1016/j.resp.2012.03.005
  18. Hogg JC, 2004, NEW ENGL J MED, V350, P2645, DOI 10.1056/NEJMoa032158
  19. Jin Y, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111044
  20. Kimura A, 2010, EUR J IMMUNOL, V40, P1830, DOI 10.1002/eji.201040391
  21. Kurimoto E, 2013, RESP RES, V14, DOI 10.1186/1465-9921-14-5
  22. Le Rouzic O, 2017, EUR RESPIR J, V50, DOI 10.1183/13993003.02434-2016
  23. Li HJ, 2015, AM J MED SCI, V349, P392, DOI 10.1097/MAJ.0000000000000447
  24. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  25. MARGRAF LR, 1991, AM REV RESPIR DIS, V143, P391
  26. Mathers CD, 2006, PLOS MED, V3, DOI 10.1371/journal.pmed.0030442
  27. Pabst R, 2002, J ALLERGY CLIN IMMUN, V110, P209, DOI 10.1067/mai.2002.126836
  28. Rahman MS, 2005, CLIN IMMUNOL, V115, P268, DOI 10.1016/j.clin.2005.01.014
  29. Roos AB, 2015, AM J RESP CRIT CARE, V192, P428, DOI 10.1164/rccm.201409-1689OC
  30. Sales DS, 2017, COPD, V14, P533, DOI 10.1080/15412555.2017.1346069
  31. Shaykhiev R, 2013, GERONTOLOGY, V59, P481, DOI 10.1159/000354173
  32. Sinden NJ, 2010, THORAX, V65, P930, DOI 10.1136/thx.2009.130260
  33. Smolonska J, 2009, AM J RESP CRIT CARE, V180, P618, DOI 10.1164/rccm.200905-0722OC
  34. Smyth LJC, 2007, CHEST, V132, P156, DOI 10.1378/chest.07-0083
  35. Toledo AC, 2012, EUR RESPIR J, V39, P254, DOI 10.1183/09031936.00003411
  36. Toumpanakis D, 2010, AM J RESP CRIT CARE, V182, P1129, DOI 10.1164/rccm.201001-0116OC
  37. Tsoumakidou M, 2011, CURR DRUG TARGETS, V12, P450, DOI 10.2174/138945011794751546
  38. van der Strate BWA, 2006, AM J RESP CRIT CARE, V173, P751, DOI 10.1164/rccm.200504-594OC
  39. Wang HY, 2015, CLIN RESPIR J, V9, P330, DOI 10.1111/crj.12147
  40. Wang HY, 2012, INT IMMUNOPHARMACOL, V14, P504, DOI 10.1016/j.intimp.2012.09.011
  41. Weaver CT, 2009, NAT REV IMMUNOL, V9, P883, DOI 10.1038/nri2660
  42. WEIBEL ER, 1963, LAB INVEST, V12, P131
  43. Zhu XH, 2009, J IMMUNOL, V182, P3270, DOI 10.4049/jimmunol.0802622