Nasal high flow, but not supplemental O-2, reduces peripheral vascular sympathetic activity during sleep in COPD patients

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
DOVE MEDICAL PRESS LTD
Autores
FRICKE, K.
SCHNEIDER, H.
HANSEL, N. N.
ZHANG, Z. G.
SOWHO, M. O.
GROTE, L.
Citação
INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, v.13, p.3635-3643, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction: Patients with COPD have increased respiratory loads and altered blood gases, both of which affect vascular function and sympathetic activity. Sleep, particularly rapid eye movement (REM) sleep, is known to exacerbate hypoxia and respiratory loads. Therefore, we hypothesize that nasal high flow (NHF), which lowers ventilatory loads, reduces sympathetic activity during sleep and that this effect depends on COPD severity. Methods: We performed full polysomnography in COPD patients (n=17; FEV1, 1.6 +/- 0.6 L) and in matched controls (n=8). Participants received room air (RA) at baseline and single night treatment with O-2 (2 L/min) and NHF (20 L/min) in a random order. Finger pulse wave amplitude (PWA), a measure of vascular sympathetic tone, was assessed by photoplethysmography. Autonomic activation (AA) events were defined as PWA attenuation >= 30% and indexed per hour for sleep stages (AA index [AAI]) at RA, NHF, and O-2). Results: In COPD, sleep apnea improved following O-2 (REM-apnea hypopnea index [AHI] with RA, O-2, and NHF: 18.6 +/- 20.9, 12.7 +/- 18.1, and 14.4 +/- 19.8, respectively; P=0.04 for O-2 and P=0.06 for NHF). REM-AAI was reduced only following NHF in COPD patients (AAI-RA, 21.5 +/- 18.4 n/h and AAI-NHF, 9.9 +/- 6.8 n/h, P=0.02) without changes following O-2 (NFIF-O-2 difference, P=0.01). REM-AAI reduction was associated with lung function expressed as FEV1 and FVC (FEV1: r=-0.59, P=0.001; FEV1/FVC: r=-0.52 and P=0.007). Conclusion: NHF but not elevated oxygenation reduces peripheral vascular sympathetic activity in COPD patients during REM sleep. Sympathetic off-loading by NHF, possibly related to improved breathing mechanics, showed a strong association with COPD severity.
Palavras-chave
COPD, sleep, nasal high flow, oxygen therapy, sympathetic activity, pulse wave amplitude
Referências
  1. Allen J, 2007, PHYSIOL MEAS, V28, pR1, DOI 10.1088/0967-3334/28/3/R01
  2. Andreas S, 2003, CHEST, V123, P366, DOI 10.1378/chest.123.2.366
  3. Ashley C, 2010, J PHYSIOL-LONDON, V588, P701, DOI 10.1113/jphysiol.2009.185348
  4. Bartels MN, 2004, RESP MED, V98, P84, DOI 10.1016/j.rmed.2002.09.001
  5. BINI G, 1980, J PHYSIOL-LONDON, V306, P537, DOI 10.1113/jphysiol.1980.sp013413
  6. Biselli P, 2018, EUR RESPIR J, V51, DOI 10.1183/13993003.02251-2017
  7. Biselli P, 2015, J APPL PHYSIOL, V119, P266, DOI 10.1152/japplphysiol.00455.2014
  8. Braeunlich J, 2015, MULTIDISCIP RESP MED, V10, DOI 10.1186/s40248-015-0019-y
  9. Burton AC, 1939, AM J PHYSIOL, V127, P437
  10. Catcheside PG, 2002, SLEEP, V25, P797, DOI 10.1093/sleep/25.7.797
  11. Chan GSH, 2012, AM J PHYSIOL-HEART C, V302, pH826, DOI 10.1152/ajpheart.00970.2011
  12. Chaouat A, 1999, EUR RESPIR J, V14, P1002, DOI 10.1183/09031936.99.14510029
  13. Clarenbach CF, 2012, HYPERTENS RES, V35, P228, DOI 10.1038/hr.2011.168
  14. Elgendi M, 2012, CURR CARDIOL REV, V8, P14, DOI 10.2174/157340312801215782
  15. FLENLEY DC, 1985, CLIN CHEST MED, V6, P651
  16. FLETCHER EC, 1992, CHEST, V101, P649, DOI 10.1378/chest.101.3.649
  17. Frat JP, 2015, NEW ENGL J MED, V372, P2185, DOI 10.1056/NEJMoa1503326
  18. Gottlieb DJ, 2014, NEW ENGL J MED, V370, P2276, DOI 10.1056/NEJMoa1306766
  19. Grote L, 2003, RESP PHYSIOL NEUROBI, V136, P141, DOI 10.1016/S1569-9048(03)00090-9
  20. Grote L, 2017, COPD, V14, P565, DOI 10.1080/15412555.2017.1365119
  21. Grote L, 2011, CHEST, V139, P253, DOI 10.1378/chest.09-3029
  22. Hedner J, 2011, J CLIN SLEEP MED, V7, P302, DOI 10.5664/JCSM.1078
  23. Iber C., AASM MANUAL SCORING
  24. Lewis CA, 2009, THORAX, V64, P133, DOI 10.1136/thx.2007.088930
  25. Marin JM, 2010, AM J RESP CRIT CARE, V182, P325, DOI 10.1164/rccm.200912-1869OC
  26. McNicholas WT, 2013, EUR RESPIR REV, V22, P365, DOI 10.1183/09059180.00003213
  27. Nilius G, 2013, ADV EXP MED BIOL, V755, P27, DOI 10.1007/978-94-007-4546-9_4
  28. O'Donnell CP, 2002, AM J RESP CRIT CARE, V166, P965, DOI 10.1164/rccm.2110072
  29. O'Donoghue FJ, 2004, J PHYSIOL-LONDON, V559, P663, DOI 10.1113/jphysiol.204.066084
  30. O'Donoghue FJ, 2003, EUR RESPIR J, V21, P977, DOI 10.1183/09031936.03.00066802
  31. Sanders MH, 2003, AM J RESP CRIT CARE, V167, P7, DOI 10.1164/rccm.2203046
  32. Sommermeyer D, 2016, MED BIOL ENG COMPUT, V54, P1111, DOI 10.1007/s11517-015-1410-8
  33. Zou D, 2004, SLEEP, V27, P485, DOI 10.1093/sleep/27.3.485
  34. Zou D, 2010, SLEEP MED, V11, P325, DOI 10.1016/j.sleep.2009.10.004
  35. Zou D, 2009, SLEEP MED, V10, P836, DOI 10.1016/j.sleep.2008.10.001