Effects of different fluid management on lung and kidney during pressure-controlled and pressure-support ventilation in experimental acute lung injury

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
CARVALHO, Eduardo Butturini de
FONSECA, Ana Carolina Fernandes
MAGALHAES, Raquel Ferreira
PINTO, Eliete Ferreira
SAMARY, Cynthia dos Santos
ANTUNES, Mariana Alves
ABREU, Marcelo Gama de
Citação
PHYSIOLOGICAL REPORTS, v.10, n.17, article ID e15429, 13p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Optimal fluid management is critical during mechanical ventilation to mitigate lung damage. Under normovolemia and protective ventilation, pulmonary tensile stress during pressure-support ventilation (PSV) results in comparable lung protection to compressive stress during pressure-controlled ventilation (PCV) in experimental acute lung injury (ALI). It is not yet known whether tensile stress can lead to comparable protection to compressive stress in ALI under a liberal fluid strategy (LF). A conservative fluid strategy (CF) was compared with LF during PSV and PCV on lungs and kidneys in an established model of ALI. Twenty-eight male Wistar rats received endotoxin intratracheally. After 24 h, they were treated with CF (minimum volume of Ringer's lactate to maintain normovolemia and mean arterial pressure >= 70 mmHg) or LF (similar to 4 times higher than CF) combined with PSV or PCV (VT = 6 ml/kg, PEEP = 3 cmH(2)O) for 1 h. Nonventilated animals (n = 4) were used for molecular biology analyses. CF-PSV compared with LF-PSV: (1) decreased the diffuse alveolar damage score (10 [7.8-12] vs. 25 [23-31.5], p = 0.006), mainly due to edema in axial and alveolar parenchyma; (2) increased birefringence for occludin and claudin-4 in lung tissue and expression of zonula-occludens-1 and metalloproteinase-9 in lung. LF compared with CF reduced neutrophil gelatinase-associated lipocalin and interleukin-6 expression in the kidneys in PSV and PCV. In conclusion, CF compared with LF combined with PSV yielded less lung epithelial cell damage in the current model of ALI. However, LF compared with CF resulted in less kidney injury markers, regardless of the ventilatory strategy.
Palavras-chave
acute lung injury, fluid therapy, hemodynamics, immunolluorcscencc, immunohistochemistry, molecular biology, pressure-support ventilation
Referências
  1. Agoston DV, 2017, FRONT NEUROL, V8, DOI 10.3389/fneur.2017.00092
  2. Akamine R, 2007, J BIOCHEM BIOPH METH, V70, P481, DOI 10.1016/j.jbbm.2006.11.008
  3. [Anonymous], 2016, CRIT CARE, V20, DOI 10.1186/s13054-016-1208-6
  4. BACHOFEN H, 1987, J APPL PHYSIOL, V62, P1878, DOI 10.1152/jappl.1987.62.5.1878
  5. Balancin ML, 2020, PATHOL RES PRACT, V216, DOI 10.1016/j.prp.2020.153277
  6. Balancin ML, 2020, CANCER MED-US, V9, P4836, DOI 10.1002/cam4.3111
  7. BAYDUR A, 1982, AM REV RESPIR DIS, V126, P788
  8. Bellani G, 2016, CRIT CARE, V20, DOI 10.1186/s13054-016-1290-9
  9. Cardinal-Fernandez P, 2017, ANN AM THORAC SOC, V14, P844, DOI 10.1513/AnnalsATS.201609-728PS
  10. Cavalcanti V, 2014, RESP PHYSIOL NEUROBI, V203, P45, DOI 10.1016/j.resp.2014.08.008
  11. Cavanaugh KJ, 2001, AM J RESP CELL MOL, V25, P584, DOI 10.1165/ajrcmb.25.5.4486
  12. Cruz FF, 2018, EXPERT REV RESP MED, V12, P403, DOI 10.1080/17476348.2018.1457954
  13. da Cruz DG, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0246891
  14. Dessap AM, 2016, INTENS CARE MED, V42, P862, DOI 10.1007/s00134-015-4141-2
  15. du Sert NP, 2020, EXP PHYSIOL, V105, P1459, DOI [10.1177/0271678X20943823, 10.1113/JP280389, 10.1371/journal.pbio.3000410, 10.1113/EP088870, 10.1186/s12917-020-02451-y, 10.1111/bph.15193]
  16. ELLIOTT MW, 1993, EUR RESPIR J, V6, P1055
  17. Famous KR, 2017, AM J RESP CRIT CARE, V195, P331, DOI 10.1164/rccm.201603-0645OC
  18. Forel JM, 2006, CRIT CARE MED, V34, P2749, DOI 10.1097/01.CCM.0000239435.87433.0D
  19. Gattinoni L, 2010, CRIT CARE MED, V38, pS539, DOI 10.1097/CCM.0b013e3181f1fcf7
  20. Holte K, 2007, ANESTHESIOLOGY, V106, P75, DOI 10.1097/00000542-200701000-00014
  21. Hsia CCW, 2010, AM J RESP CRIT CARE, V181, P394, DOI 10.1164/rccm.200809-1522ST
  22. Huter L, 2009, CRIT CARE, V13, DOI 10.1186/cc7726
  23. Huppert LA, 2019, SEMIN RESP CRIT CARE, V40, P31, DOI 10.1055/s-0039-1683996
  24. Kiss T, 2016, BRIT J ANAESTH, V116, P708, DOI 10.1093/bja/aew093
  25. Kotlinska-Hasiec E, 2017, ADV CLIN EXP MED, V26, P1189, DOI 10.17219/acem/63140
  26. Lang RM, 2015, EUR HEART J-CARD IMG, V16, P233, DOI 10.1093/ehjci/jev014
  27. Lobo SM, 2011, CRIT CARE, V15, DOI 10.1186/cc10466
  28. Magalhaes PAF, 2018, EUR J ANAESTH, V35, P298, DOI 10.1097/EJA.0000000000000763
  29. Marini JJ, 2020, CRIT CARE, V24, DOI 10.1186/s13054-020-2747-4
  30. Matute-Bello G, 2008, AM J PHYSIOL-LUNG C, V295, pL379, DOI 10.1152/ajplung.00010.2008
  31. Matute-Bello G, 2011, AM J RESP CELL MOL, V44, P725, DOI 10.1165/rcmb.2009-0210ST
  32. Meng C, 2020, BIOMED PHARMACOTHER, V125, DOI 10.1016/j.biopha.2020.109995
  33. Moraes L, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.00318
  34. Moraes L, 2014, CRIT CARE, V18, DOI 10.1186/s13054-014-0474-4
  35. Ogata-Suetsugu S, 2017, BIOCHEM BIOPH RES CO, V484, P422, DOI 10.1016/j.bbrc.2017.01.142
  36. Parameswaran H, 2006, J APPL PHYSIOL, V100, P186, DOI 10.1152/japplphysiol.00424.2005
  37. Pinto EF, 2020, ANESTHESIOLOGY, V132, P307, DOI 10.1097/ALN.0000000000003060
  38. Pugin J, 1999, CRIT CARE MED, V27, P304, DOI 10.1097/00003246-199902000-00036
  39. Rahbari NN, 2009, BRIT J SURG, V96, P331, DOI 10.1002/bjs.6552
  40. Roan E, 2011, AM J PHYSIOL-LUNG C, V301, pL625, DOI 10.1152/ajplung.00105.2011
  41. Rocha NN, 2021, RESP RES, V22, DOI 10.1186/s12931-021-01811-y
  42. Saddy F, 2014, SEMIN RESP CRIT CARE, V35, P409, DOI 10.1055/s-0034-1382153
  43. Saddy F, 2013, CRIT CARE, V17, DOI 10.1186/cc13051
  44. Saddy F, 2010, INTENS CARE MED, V36, P1417, DOI 10.1007/s00134-010-1808-6
  45. Santiago VR, 2010, CRIT CARE MED, V38, P2207, DOI 10.1097/CCM.0b013e3181f3e076
  46. Santos CL, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178207
  47. Shin CH, 2018, ANN SURG, V267, P1084, DOI 10.1097/SLA.0000000000002220
  48. Silva PL, 2013, CRIT CARE MED, V41, pE256, DOI 10.1097/CCM.0b013e31828a3c13
  49. Silva PL, 2022, SEMIN RESP CRIT CARE, V43, P321, DOI 10.1055/s-0042-1744447
  50. Silva PL, 2018, ANN TRANSL MED, V6, DOI 10.21037/atm.2018.10.03
  51. Silva PL, 2018, CRIT CARE MED, V46, pE609, DOI 10.1097/CCM.0000000000003078
  52. Tschumperlin DJ, 2000, AM J RESP CRIT CARE, V162, P357, DOI 10.1164/ajrccm.162.2.9807003
  53. Uhlig C, 2014, RESP RES, V15, DOI 10.1186/1465-9921-15-56
  54. van Haren F, 2019, CRIT CARE MED, V47, P229, DOI 10.1097/CCM.0000000000003519
  55. Vieillard-Baron A, 2016, INTENS CARE MED, V42, P739, DOI 10.1007/s00134-016-4326-3
  56. Ware LB, 2000, NEW ENGL J MED, V342, P1334, DOI 10.1056/NEJM200005043421806
  57. Watson LE, 2004, J AM SOC ECHOCARDIOG, V17, P161, DOI 10.1016/j.echo.2003.10.010
  58. Wierzchon CGRS, 2017, FRONT PHYSIOL, V8, DOI 10.3389/fphys.2017.01071
  59. Yoshida T, 2017, AM J RESP CRIT CARE, V195, P985, DOI 10.1164/rccm.201604-0748CP