A Comparative Analysis of the Relative Efficacy of Vector-Control Strategies Against Dengue Fever

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorAMAKU, Marcos
dc.contributor.authorCOUTINHO, Francisco Antonio Bezerra
dc.contributor.authorRAIMUNDO, Silvia Martorano
dc.contributor.authorLOPEZ, Luis Fernandez
dc.contributor.authorBURATTINI, Marcelo Nascimento
dc.contributor.authorMASSAD, Eduardo
dc.date.accessioned2014-09-30T14:45:21Z
dc.date.available2014-09-30T14:45:21Z
dc.date.issued2014
dc.description.abstractDengue is considered one of the most important vector-borne infection, affecting almost half of the world population with 50 to 100 million cases every year. In this paper, we present one of the simplest models that can encapsulate all the important variables related to vector control of dengue fever. The model considers the human population, the adult mosquito population and the population of immature stages, which includes eggs, larvae and pupae. The model also considers the vertical transmission of dengue in the mosquitoes and the seasonal variation in the mosquito population. From this basic model describing the dynamics of dengue infection, we deduce thresholds for avoiding the introduction of the disease and for the elimination of the disease. In particular, we deduce a Basic Reproduction Number for dengue that includes parameters related to the immature stages of the mosquito. By neglecting seasonal variation, we calculate the equilibrium values of the model's variables. We also present a sensitivity analysis of the impact of four vector-control strategies on the Basic Reproduction Number, on the Force of Infection and on the human prevalence of dengue. Each of the strategies was studied separately from the others. The analysis presented allows us to conclude that of the available vector control strategies, adulticide application is the most effective, followed by the reduction of the exposure to mosquito bites, locating and destroying breeding places and, finally, larvicides. Current vector-control methods are concentrated on mechanical destruction of mosquitoes' breeding places. Our results suggest that reducing the contact between vector and hosts (biting rates) is as efficient as the logistically difficult but very efficient adult mosquito's control.
dc.description.indexMEDLINE
dc.description.sponsorshipEuropean Union [282589]
dc.description.sponsorshipLIM01 HCFMUSP
dc.description.sponsorshipCNPq
dc.identifier.citationBULLETIN OF MATHEMATICAL BIOLOGY, v.76, n.3, p.697-717, 2014
dc.identifier.doi10.1007/s11538-014-9939-5
dc.identifier.eissn1522-9602
dc.identifier.issn0092-8240
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/7701
dc.language.isoeng
dc.publisherSPRINGER
dc.relation.ispartofBulletin of Mathematical Biology
dc.rightsrestrictedAccess
dc.rights.holderCopyright SPRINGER
dc.subjectDengue
dc.subjectBasic reproduction number
dc.subjectForce of infection
dc.subjectSensitivity analysis
dc.subjectVector control
dc.subject.otherpopulation-dynamics
dc.subject.otherthreshold conditions
dc.subject.othersensitivity-analysis
dc.subject.otheraedes-aegypti
dc.subject.othertransmission
dc.subject.otherdisease
dc.subject.otherinfections
dc.subject.otherparameters
dc.subject.othermosquito
dc.subject.othermalaria
dc.subject.wosBiology
dc.subject.wosMathematical & Computational Biology
dc.titleA Comparative Analysis of the Relative Efficacy of Vector-Control Strategies Against Dengue Fever
dc.typearticle
dc.type.categoryoriginal article
dc.type.versionpublishedVersion
dspace.entity.typePublication
hcfmusp.author.externalAMAKU, Marcos:Univ Sao Paulo, Sch Vet Med, BR-05508270 Sao Paulo, Brazil
hcfmusp.citation.scopus37
hcfmusp.contributor.author-fmusphcFRANCISCO ANTONIO BEZERRA COUTINHO
hcfmusp.contributor.author-fmusphcSILVIA MARTORANO RAIMUNDO
hcfmusp.contributor.author-fmusphcLUIS FERNANDEZ LOPEZ
hcfmusp.contributor.author-fmusphcMARCELO NASCIMENTO BURATTINI
hcfmusp.contributor.author-fmusphcEDUARDO MASSAD
hcfmusp.description.beginpage697
hcfmusp.description.endpage717
hcfmusp.description.issue3
hcfmusp.description.volume76
hcfmusp.origemWOS
hcfmusp.origem.pubmed24619807
hcfmusp.origem.scopus2-s2.0-84896544630
hcfmusp.origem.wosWOS:000333125400008
hcfmusp.publisher.cityNEW YORK
hcfmusp.publisher.countryUSA
hcfmusp.relation.referenceAdams B, 2010, EPIDEMICS-NETH, V2, P1, DOI 10.1016/j.epidem.2010.01.001
hcfmusp.relation.referenceAguiar M, 2013, ECOL COMPLEX, V16, P31, DOI 10.1016/j.ecocom.2012.09.001
hcfmusp.relation.referenceAmaku M., 2013, PHIL T R SOC A
hcfmusp.relation.referenceAmaku M, 2009, MEM I OSWALDO CRUZ, V104, P897, DOI 10.1590/S0074-02762009000600013
hcfmusp.relation.referenceAmaku M, 2013, COMPUT MATH METHOD M, DOI 10.1155/2013/659038
hcfmusp.relation.referenceAnguelov R, 2012, COMPUT MATH APPL, V64, P374, DOI 10.1016/j.camwa.2012.02.068
hcfmusp.relation.referenceBacaer N, 2006, J MATH BIOL, V53, P421, DOI 10.1007/s00285-006-0015-0
hcfmusp.relation.referenceBeatty ME, 2008, P 2 INT C DENG DENG
hcfmusp.relation.referenceBeatty ME, 2011, AM J TROP MED HYG, V84, P473, DOI 10.4269/ajtmh.2011.10-0521
hcfmusp.relation.referenceBrownstin JS, 2003, J INVERTEBR PATHOL, V84, P24, DOI 10.1016/S0022-2011(03)00082-X
hcfmusp.relation.referenceBurattini MN, 2008, EPIDEMIOL INFECT, V136, P309, DOI 10.1017/S0950268807008667
hcfmusp.relation.referenceChitnis N, 2008, B MATH BIOL, V70, P1272, DOI 10.1007/s11538-008-9299-0
hcfmusp.relation.referenceCousins R. D., 2004, AM J PHYS, V72, P1068
hcfmusp.relation.referenceCoutinho F. A. B., 2004, AM J PHYS, V72, P1068
hcfmusp.relation.referenceCoutinho FAB, 2006, B MATH BIOL, V68, P2263, DOI 10.1007/s11538-006-9108-6
hcfmusp.relation.referenceCoutinho FAB, 2005, MATH COMPUT SIMULAT, V70, P149, DOI 10.1016/j.matcom.2005.06.003
hcfmusp.relation.referenceDumont Y, 2010, MATH BIOSCI ENG, V7, P313, DOI 10.3934/mbe.2010.7.313
hcfmusp.relation.referenceEllis AM, 2011, AM J TROP MED HYG, V85, P257, DOI 10.4269/ajtmh.2011.10-0516
hcfmusp.relation.referenceErickson RA, 2010, ECOL MODEL, V221, P2899, DOI 10.1016/j.ecolmodel.2010.08.036
hcfmusp.relation.referenceFegan GW, 2007, LANCET, V370, P1035, DOI 10.1016/S0140-6736(07)61477-9
hcfmusp.relation.referenceForattini O. P., 1996, MED CULICIDOLOGY
hcfmusp.relation.referenceGarba SM, 2008, MATH BIOSCI, V215, P11, DOI 10.1016/j.mbs.2008.05.002
hcfmusp.relation.referenceGubler Duane J, 2011, Trop Med Health, V39, P3, DOI 10.2149/tmh.2011-S05
hcfmusp.relation.referenceGubler DJ, 2002, ARCH MED RES, V33, P330, DOI 10.1016/S0188-4409(02)00378-8
hcfmusp.relation.referenceGuy B, 2011, LANCET, V377, P381, DOI 10.1016/S0140-6736(11)60128-1
hcfmusp.relation.referenceHalstead S. B., 1990, Tropical and geographical medicine., P675
hcfmusp.relation.referenceKhasnis AA, 2005, ARCH MED RES, V36, P689, DOI 10.1016/j.arcmed.2005.03.041
hcfmusp.relation.referenceKooi BW, 2013, J COMPUT APPL MATH, V252, P148, DOI 10.1016/j.cam.2012.08.008
hcfmusp.relation.referenceLambrechts L, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000646
hcfmusp.relation.referenceLopez LF, 2002, CR BIOL, V325, P1073, DOI 10.1016/S1631-0691(02)01534-2
hcfmusp.relation.referenceLuz PM, 2011, LANCET, V377, P1673, DOI 10.1016/S0140-6736(11)60246-8
hcfmusp.relation.referenceMACDONALD G, 1952, Trop Dis Bull, V49, P813
hcfmusp.relation.referenceMassad E, 2011, PHYS LIFE REV, V8, P169, DOI 10.1016/j.plrev.2011.01.001
hcfmusp.relation.referenceMassad E, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-296
hcfmusp.relation.referenceMassad E, 2011, LANCET, V377, P1630, DOI 10.1016/S0140-6736(11)60470-4
hcfmusp.relation.referenceOcampo CB, 2004, AM J TROP MED HYG, V71, P506
hcfmusp.relation.referencePinho STR, 2010, PHILOS T R SOC A, V368, P5679, DOI 10.1098/rsta.2010.0278
hcfmusp.relation.referenceReiter P., 2001, DENGUE DENGUE HEMORR, P425
hcfmusp.relation.referenceRodrigues H. S., 2012, ARXIV12040544V1
hcfmusp.relation.referenceRoss R, 1911, PREVENTION MALARIA
hcfmusp.relation.referenceSilverman MP, 2004, AM J PHYS, V72, P1068, DOI 10.1119/1.1738426
hcfmusp.relation.referenceSuaya JA, 2009, AM J TROP MED HYG, V80, P846
hcfmusp.relation.referenceUNWTO - United Nations World Tourism Organization, 2011, TOUR HIGHL
hcfmusp.relation.referenceWahl LM, 2000, P ROY SOC B-BIOL SCI, V267, P835, DOI 10.1098/rspb.2000.1079
hcfmusp.relation.referenceWang WD, 2008, J DYN DIFFER EQU, V20, P699, DOI 10.1007/s10884-008-9111-8
hcfmusp.relation.referenceWilder-Smith A., 2012, Global Health Action, V5, P17273
hcfmusp.relation.referenceWilder-Smith Annelies, 2010, Curr Infect Dis Rep, V12, P157, DOI 10.1007/s11908-010-0102-7
hcfmusp.relation.referenceYASUNO M, 1970, B WORLD HEALTH ORGAN, V43, P319
hcfmusp.remissive.sponsorshipCNPq
hcfmusp.remissive.sponsorshipFMUSP-HC
hcfmusp.remissive.sponsorshipEuropean Union
hcfmusp.scopus.lastupdate2024-05-17
relation.isAuthorOfPublicationf189000a-8bc7-463c-9b97-69de03349627
relation.isAuthorOfPublication66840f84-6ae3-4149-a823-e1d05b3e3e5d
relation.isAuthorOfPublication27185c98-10fa-4e47-b432-b0e1e576966c
relation.isAuthorOfPublication3d27f66b-726b-44bb-adfc-9235e06d3583
relation.isAuthorOfPublication2d14cb40-bd10-4412-aeb3-ff717514d3af
relation.isAuthorOfPublication.latestForDiscoveryf189000a-8bc7-463c-9b97-69de03349627
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
art_COUTINHO_A_Comparative_Analysis_of_the_Relative_Efficacy_of_2014.PDF
Tamanho:
635.12 KB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)