Early effects of bone marrow-derived mononuclear cells on lung and kidney in experimental sepsis

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
SILVA, Carla M.
ORNELLAS, Debora S.
SANTOS, Raquel S.
MARTINI, Sabrina V.
FERREIRA, Debora
MUILER, Caroline
CRUZ, Fernanda F.
TAKIYA, Christina M.
ROCCO, Patricia R. M.
Citação
RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, v.309, article ID 103999, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: In experimental sepsis, functional and morphological effects of bone marrow-derived mononuclear cell (BMDMC) administration in lung tissue have been evaluated 1 and 7 days after therapy. However, to date no study has evaluated the early effects of BMDMCs in both lung and kidney in experimental polymicrobial sepsis.Material and methods: Twenty-five female C57BL/6 mice were randomly divided into the following groups: 1) cecal ligation and puncture (CLP)-induced sepsis; and 2) Sham (surgical procedure without CLP). After 1 h, CLP animals received saline (NaCl 0.9%) (CLP-Saline) or 106 BMDMCs (CLP-Cell) via the jugular vein. At 6, 12, and 24 h after saline or BMDMC administration, lungs and kidneys were removed for histology and molecular biology analysis.Results: In lungs, CLP-Saline, compared to Sham, was associated with increased lung injury score (LIS) and keratinocyte chemoattractant (KC) mRNA expression at 6, 12, and 24 h. BMDMCs were associated with reduced LIS and KC mRNA expression regardless of the time point of analysis. Interleukin (IL)-10 mRNA content was higher in CLP-Cell than CLP-Saline at 6 and 24 h. In kidney tissue, CLP-Saline, compared to Sham, was associated with tubular cell injury and increased neutrophil gelatinase-associated lipocalin (NGAL) levels, which were reduced after BMDMC therapy at all time points. Surface high-mobility-group-box (HMGB)-1 levels were higher in CLP-Saline than Sham at 6, 12, and 24 h, whereas nuclear HMGB-1 levels were increased only at 24 h. BMDMCs were associated with decreased surface HMGB-1 and increased nuclear HMGB-1 levels. Kidney injury molecule (KIM)-1 and IL-18 gene expressions were reduced in CLP-Cell compared to CLP-Saline at 12 and 24 h.Conclusion: In the present experimental polymicrobial sepsis, early intravenous therapy with BMDMCs was able to reduce lung and kidney damage in a time-dependent manner. BMDMCs thus represent a potential therapy in well-known scenarios of sepsis induction.Purpose: To evaluate early bone marrow-derived mononuclear cell (BMDMC) therapy on lung and kidney in experimental polymicrobial sepsis.Methods: Twenty-five female C57BL/6 mice were randomly divided into the following groups: cecal ligation and puncture (CLP)-induced sepsis; and sham (surgical procedure without CLP). After 1 h, CLP animals received saline (CLP-saline) or 106 BMDMCs (CLP-cell) via the jugular vein. Lungs and kidneys were evaluated for his-tology and molecular biology after 6, 12, and 24 h.
Palavras-chave
Sepsis, Cecal ligation and puncture, Acute respiratory distress syndrome, Acute kidney injury, Immunohistochemistry
Referências
  1. Aaij R, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.062004
  2. Aiello S, 2010, KIDNEY INT, V78, P1208, DOI 10.1038/ki.2010.367
  3. Akamine R, 2007, J BIOCHEM BIOPH METH, V70, P481, DOI 10.1016/j.jbbm.2006.11.008
  4. Andersson U, 2018, SEMIN IMMUNOL, V38, P40, DOI 10.1016/j.smim.2018.02.011
  5. Andersson U, 2011, ANNU REV IMMUNOL, V29, P139, DOI 10.1146/annurev-immunol-030409-101323
  6. Araujo IM, 2010, CRIT CARE MED, V38, P1733, DOI 10.1097/CCM.0b013e3181e796d2
  7. Armstrong RA, 2014, OPHTHAL PHYSL OPT, V34, P502, DOI 10.1111/opo.12131
  8. BATES JHT, 1985, J APPL PHYSIOL, V58, P1840, DOI 10.1152/jappl.1985.58.6.1840
  9. Bellomo R, 2012, LANCET, V380, P756, DOI 10.1016/S0140-6736(11)61454-2
  10. Cao C, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-2015-1
  11. Carrigan SD, 2004, CLIN CHEM, V50, P1301, DOI 10.1373/clinchem.2004.032144
  12. Chao MCM, 2010, RESP PHYSIOL NEUROBI, V173, P179, DOI 10.1016/j.resp.2010.08.005
  13. de Oliveira HD, 2017, STEM CELL RES THER, V8, DOI 10.1186/s13287-017-0699-7
  14. Dejager L, 2011, TRENDS MICROBIOL, V19, P198, DOI 10.1016/j.tim.2011.01.001
  15. Dellinger RP, 2008, INTENS CARE MED, V34, P783, DOI 10.1007/s00134-007-0934-2
  16. du Sert NP, 2020, BRIT J PHARMACOL, V177, P3617, DOI 10.1111/bph.15193
  17. Gabrysova L, 2014, CURR TOP MICROBIOL, V380, P157, DOI 10.1007/978-3-662-43492-5_8
  18. Gaião Sérgio Mina, 2017, Rev. bras. ter. intensiva, V29, P373, DOI [10.5935/0103-507X.20170051, 10.5935/0103-507x.20170051]
  19. Gotts JE, 2011, CRIT CARE CLIN, V27, P719, DOI 10.1016/j.ccc.2011.04.004
  20. Haase-Fielitz A, 2014, ANN CLIN BIOCHEM, V51, P335, DOI 10.1177/0004563214521795
  21. Hecker A, 2019, LANGENBECK ARCH SURG, V404, P257, DOI 10.1007/s00423-019-01752-7
  22. Herold S, 2011, AM J RESP CRIT CARE, V183, P1380, DOI 10.1164/rccm.201009-1431OC
  23. Hubbard WJ, 2005, SHOCK, V24, P52, DOI 10.1097/01.shk.0000191414.94461.7e
  24. Ichimura T, 2008, J CLIN INVEST, V118, P1657, DOI 10.1172/JCI34487
  25. Kellum JA, 2016, AM J RESP CRIT CARE, V193, P281, DOI 10.1164/rccm.201505-0995OC
  26. Lan KC, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-12285-8
  27. Lei SH, 2013, ORTHOP SURG, V5, P280, DOI 10.1111/os.12071
  28. Li JL, 2018, J INT MED RES, V46, P2410, DOI 10.1177/0300060518764717
  29. Lopes-Pacheco M, 2020, CELL BIOL TOXICOL, V36, P83, DOI 10.1007/s10565-019-09493-5
  30. Lorigados CB, 2019, SHOCK, V51, P381, DOI 10.1097/SHK.0000000000001151
  31. Lu DB, 2011, DIABETES RES CLIN PR, V92, P26, DOI 10.1016/j.diabres.2010.12.010
  32. Luk Cathy Choi-Wan, 2013, Dis Markers, V34, P179
  33. Luster AD, 1998, NEW ENGL J MED, V338, P436, DOI 10.1056/NEJM199802123380706
  34. Maron-Gutierrez T, 2011, EUR RESPIR J, V37, P1217, DOI 10.1183/09031936.00205009
  35. Maron-Gutierrez T, 2013, STEM CELL RES THER, V4, DOI 10.1186/scrt334
  36. Mathieu M, 2009, J THORAC CARDIOV SUR, V138, P646, DOI 10.1016/j.jtcvs.2008.12.031
  37. Matute-Bello G, 2011, AM J RESP CELL MOL, V44, P725, DOI 10.1165/rcmb.2009-0210ST
  38. Melnikov VY, 2002, J CLIN INVEST, V110, P1083, DOI 10.1172/JCI200215623
  39. Opal SM, 2014, AM J RESP CRIT CARE, V189, P242, DOI 10.1164/rccm.201312-2292ED
  40. Ordonez CA, 2006, SURG CLIN N AM, V86, P1323, DOI 10.1016/j.suc.2006.09.006
  41. Ornellas DS, 2011, RESP PHYSIOL NEUROBI, V178, P304, DOI 10.1016/j.resp.2011.06.029
  42. Ornellas FM, 2017, CELL PHYSIOL BIOCHEM, V41, P1736, DOI 10.1159/000471866
  43. Parikh CR, 2006, AM J TRANSPLANT, V6, P1639, DOI 10.1111/j.1600-6143.2006.01352.x
  44. Peerapornratana S, 2019, KIDNEY INT, V96, P1083, DOI 10.1016/j.kint.2019.05.026
  45. Pelosi P, 2013, STEM CELL RES THER, V4, DOI 10.1186/scrt354
  46. Ratliff BB, 2013, J AM SOC NEPHROL, V24, P529, DOI 10.1681/ASN.2012060633
  47. Rice JC, 2002, RENAL FAILURE, V24, P703, DOI 10.1081/JDI-120015673
  48. Rittirsch D, 2009, NAT PROTOC, V4, P31, DOI 10.1038/nprot.2008.214
  49. Robledo Felipe A, 2007, Surg Infect (Larchmt), V8, P63, DOI 10.1089/sur.2006.8.016
  50. Rong H, 2017, BRAIN BEHAV IMMUN, V64, P195, DOI 10.1016/j.bbi.2017.03.006
  51. Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73
  52. Schrier RW, 2004, NEW ENGL J MED, V351, P159, DOI 10.1056/NEJMra032401
  53. Schulte W, 2013, MEDIAT INFLAMM, V2013, DOI 10.1155/2013/165974
  54. Seeley EJ, 2013, ADV CHRONIC KIDNEY D, V20, P14, DOI 10.1053/j.ackd.2012.10.001
  55. Sharfuddin AA, 2011, NAT REV NEPHROL, V7, P189, DOI 10.1038/nrneph.2011.16
  56. Silva JD, 2014, CRIT CARE MED, V42, pE510, DOI 10.1097/CCM.0000000000000296
  57. Soltan M, 2009, IMPLANT DENT, V18, P132, DOI 10.1097/ID.0b013e3181990e75
  58. Sonego F, 2016, FRONT IMMUNOL, V7, DOI 10.3389/fimmu.2016.00155
  59. Sood MM, 2014, J CRIT CARE, V29, P711, DOI 10.1016/j.jcrc.2014.04.003
  60. Srisawat N, 2011, CLIN J AM SOC NEPHRO, V6, P1815, DOI 10.2215/CJN.11261210
  61. Toscano MG, 2011, JOVE-J VIS EXP, DOI 10.3791/2860
  62. van der Poll T, 2017, NAT REV IMMUNOL, V17, P407, DOI 10.1038/nri.2017.36
  63. Vanden Berghe T, 2014, AM J RESP CRIT CARE, V189, P282, DOI 10.1164/rccm.201308-1535OC
  64. Vincent JL, 2006, CRIT CARE MED, V34, P344, DOI 10.1097/01.CCM.0000194725.48928.3A
  65. Waibel BH, 2012, SURG CLIN N AM, V92, P243, DOI 10.1016/j.suc.2012.01.006
  66. Wang HE, 2012, AM J NEPHROL, V35, P349, DOI 10.1159/000337487
  67. Wen XY, 2020, INTENS CARE MED EXP, V8, DOI 10.1186/s40635-020-0297-3
  68. Wise JK, 2014, TISSUE ENG PT A, V20, P210, DOI [10.1089/ten.tea.2013.0151, 10.1089/ten.TEA.2013.0151]
  69. Yang H, 2005, J LEUKOCYTE BIOL, V78, P1, DOI 10.1189/jlb.1104648
  70. Zarjou A, 2011, J AM SOC NEPHROL, V22, P999, DOI 10.1681/ASN.2010050484