Chromosomal segments may explain the antibody response cooperation for canine leishmaniasis pathogenesis

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
BATISTA, Luis F. S.
TORRECILHA, Rafaela B. P.
SILVA, Rafaela B.
UTSUNOMIYA, Yuri T.
PACHECO, Acacio D.
BOSCO, Anelise M.
PAULAN, Silvana C.
ROSSI, Claudio N.
Citação
VETERINARY PARASITOLOGY, v.288, article ID 109276, 12p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Visceral leishmaniasis (VL) is marked by hyperactivation of a humoral response secreting high quantity of immunoglobulins (Igs) that are inaccessible to intracellular parasites. Here we investigated the contributions of the antibody response to the canine leishmaniasis pathogenesis. Using correlation and genome-wide association analysis, we investigated the relationship of anti-Leishmania infantum immunoglobulin classes levels with parasite burden, clinical response, renal/hepatic biochemical, and oxidative stress markers in dogs from endemic areas of VL. Immunoglobulin G (IgG) and IgA were positively correlated with parasite burden on lymph node and blood. Increased IgG, IgA and IgE levels were associated with severe canine leishmaniasis (CanL) whereas IgM was elevated in uninfected exposed dogs. Correlations of IgM, IgG and IgA with creatinine, urea, AST and ALT levels in the serum were suggested an involvement of those Igs with renal and hepatic changes. The correlogram of oxidative radicals and antioxidants revealed a likely relationship of IgM, IgG and IgA with oxidative stress and lipid pemxidation in the blood, suggested as mechanisms mediating tissue damage and CanL worsening. The gene mapping on chromosomal segments associated with the quantitative variation of immunoglobulin classes identified genetic signatures involved with reactive oxygen species generation, phagolysosome maturation and rupture, free iron availability, Thl/Th2 differenciation and, immunoglobulin clearance. The findings demonstrated the roles of the antibody response as resistance or susceptibility markers and mediators of CanL pathogenesis. In addition we pinpointed candidate genes as potential targets for the therapy against the damage caused by exacerbated antibody response and parasitism in VL.
Palavras-chave
GWAS, Canine leishmaniasis, Antiboby response, Oxidative stress, Renal-hepatic changes
Referências
  1. Almeida BFM, 2013, VET J, V198, P599, DOI 10.1016/j.tvjl.2013.08.024
  2. Alvar J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035671
  3. AMES BN, 1981, P NATL ACAD SCI-BIOL, V78, P6858, DOI 10.1073/pnas.78.11.6858
  4. Arthur MJP, 1996, J GASTROEN HEPATOL, V11, P1124, DOI 10.1111/j.1440-1746.1996.tb01840.x
  5. Baig MS, 2015, J EXP MED, V212, P1725, DOI 10.1084/jem.20140654
  6. Batista LFS, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0197215
  7. Batista LFS, 2016, INFECT IMMUN, V84, P3629, DOI 10.1128/IAI.00486-16
  8. Bellomo F, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0154805
  9. Belo VS, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002182
  10. Brandonisio O, 1996, VET IMMUNOL IMMUNOP, V53, P95, DOI 10.1016/0165-2427(96)05562-6
  11. Britti D, 2008, VET RES COMMUN, V32, pS251, DOI [10.1007/s11259-008-9121, 10.1007/s11259-008-9121-3]
  12. Brojatsch J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0095032
  13. Cantos-Barreda A, 2018, VET PARASITOL, V260, P63, DOI 10.1016/j.vetpar.2018.08.010
  14. Cerutti A, 2000, J IMMUNOL, V165, P786, DOI 10.4049/jimmunol.165.2.786
  15. Ciaramella P, 1997, VET REC, V141, P539, DOI 10.1136/vr.141.21.539
  16. Courtenay O, 2002, J INFECT DIS, V186, P1314, DOI 10.1086/344312
  17. De Luna R, 2000, J COMP PATHOL, V122, P213, DOI 10.1053/jcpa.1999.0357
  18. de Vasconcelos T.C.B., 2017, INFECT GENET EVOL, V47
  19. DECARVALHO LCP, 1986, CLIN EXP IMMUNOL, V64, P495
  20. Desjardins M, 1997, J EXP MED, V185, P2061, DOI 10.1084/jem.185.12.2061
  21. Giunchetti RC, 2019, VET PARASITOL, V271, P87, DOI 10.1016/j.vetpar.2019.05.006
  22. Han SB, 2005, IMMUNITY, V22, P343, DOI 10.1016/j.immuni.2005.01.017
  23. HARRIS CH, 1993, VET IMMUNOL IMMUNOP, V36, P1, DOI 10.1016/0165-2427(93)90002-L
  24. Heidarpour M, 2012, PARASITOL RES, V111, P1491, DOI 10.1007/s00436-012-2985-8
  25. Hwang IY, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072596
  26. Jacobson LS, 2013, J BIOL CHEM, V288, P7481, DOI 10.1074/jbc.M112.400655
  27. Janoff EN, 1999, J CLIN INVEST, V104, P1139, DOI 10.1172/JCI6310
  28. Kanazawa T, 2011, J VET MED SCI, V73, P601, DOI 10.1292/jvms.10-0493
  29. Kaneko J.J., 1997, CLIN BIOCH DOMESTIC, P932
  30. Kang HM, 2010, NAT GENET, V42, P348, DOI 10.1038/ng.548
  31. Kawano M, 2013, ARCH BIOCHEM BIOPHYS, V538, P164, DOI 10.1016/j.abb.2013.08.017
  32. Kohler AC, 2014, ACTA CRYSTALLOGR D, V70, P384, DOI 10.1107/S1399004713028393
  33. Kono H, 2008, NAT REV IMMUNOL, V8, P279, DOI 10.1038/nri2215
  34. Koutinas AF, 2014, VET PATHOL, V51, P527, DOI 10.1177/0300985814521248
  35. Krebs LT, 2001, DEV BIOL, V238, P110, DOI 10.1006/dbio.2001.0408
  36. Lai KN, 2012, NAT REV NEPHROL, V8, P275, DOI 10.1038/nrneph.2012.58
  37. Lainson R, 2005, MEM I OSWALDO CRUZ, V100, P811, DOI 10.1590/S0074-02762005000800001
  38. Laurenti MD, 2014, VET PARASITOL, V205, P444, DOI 10.1016/j.vetpar.2014.09.002
  39. Lofgren R, 1999, BBA-MOL CELL RES, V1452, P46, DOI 10.1016/S0167-4889(99)00112-3
  40. LUCISANO YM, 1988, IMMUNOLOGY, V65, P171
  41. Mackay LK, 2015, IMMUNITY, V43, P1101, DOI 10.1016/j.immuni.2015.11.008
  42. Mencacci A, 1997, J INFECT DIS, V175, P1467, DOI 10.1086/516481
  43. Moreira VR, 2017, ANTIMICROB AGENTS CH, V61, DOI [10.1128/AAC.02360-16, 10.1128/aac.02360-16]
  44. Costa CHN, 2010, REV SOC BRAS MED TRO, V43, P386, DOI 10.1590/S0037-86822010000400010
  45. NIETO CG, 1992, VET PARASITOL, V45, P33, DOI 10.1016/0304-4017(92)90025-5
  46. Nisimoto Y, 2014, BIOCHEMISTRY-US, V53, P5111, DOI 10.1021/bi500331y
  47. Olsson M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0133844
  48. Paltrinieri S, 2010, VET J, V186, P393, DOI 10.1016/j.tvjl.2009.08.019
  49. Paltrinieri S, 2010, JAVMA-J AM VET MED A, V236, P1184, DOI 10.2460/javma.236.11.1184
  50. Pinto AJW, 2011, ACTA VET SCAND, V53, DOI 10.1186/1751-0147-53-67
  51. Plevraki K, 2006, J VET INTERN MED, V20, P228, DOI 10.1892/0891-6640(2006)20[228:EOATOT]2.0.CO;2
  52. Quinnell RJ, 2003, IMMUNOGENETICS, V55, P23, DOI 10.1007/s00251-003-0545-1
  53. Reis AB, 2009, VET IMMUNOL IMMUNOP, V128, P87, DOI 10.1016/j.vetimm.2008.10.307
  54. Robson MG, 2001, J IMMUNOL, V166, P6820, DOI 10.4049/jimmunol.166.11.6820
  55. Roos A, 2001, J IMMUNOL, V167, P2861, DOI 10.4049/jimmunol.167.5.2861
  56. Roy N, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0110843
  57. Russell DG, 2001, NAT REV MOL CELL BIO, V2, P569, DOI 10.1038/35085034
  58. Seto S, 2011, TRAFFIC, V12, P407, DOI 10.1111/j.1600-0854.2011.01165.x
  59. Siqueira-Neto JL, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006512
  60. Solano-Gallego L, 2001, VET PARASITOL, V96, P265, DOI 10.1016/S0304-4017(00)00446-5
  61. Souza CC, 2014, INT J EXP PATHOL, V95, P260, DOI 10.1111/iep.12080
  62. Srivastava M., 2017, INFLAMM RES, V66, P323
  63. STOCKER R, 1987, SCIENCE, V235, P1043, DOI 10.1126/science.3029864
  64. Taverna M, 2013, ANN INTENSIVE CARE, V3, DOI 10.1186/2110-5820-3-4
  65. Rodrigues CAT, 2007, VET PARASITOL, V143, P197, DOI 10.1016/j.vetpar.2006.09.003
  66. Tindemans I, 2017, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.00419
  67. Todoli F, 2009, VET PARASITOL, V159, P17, DOI 10.1016/j.vetpar.2008.10.010
  68. Torrecilha RBP, 2016, PREV VET MED, V132, P83, DOI 10.1016/j.prevetmed.2016.08.006
  69. Utsunomiya YT, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136749
  70. WEISS G, 1994, J EXP MED, V180, P969, DOI 10.1084/jem.180.3.969
  71. WILSON ME, 1994, INFECT IMMUN, V62, P3262, DOI 10.1128/IAI.62.8.3262-3269.1994
  72. Yabuki A, 2016, J VET MED SCI, V78, P513, DOI 10.1292/jvms.15-0161