Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients

Carregando...
Imagem de Miniatura
Citações na Scopus
42
Tipo de produção
article
Data de publicação
2011
Título da Revista
ISSN da Revista
Título do Volume
Editora
FUTURE MEDICINE LTD
Autores
SANTORO, Ana
FELIPE, Claudia R.
TEDESCO-SILVA, Helio
MEDINA-PESTANA, Jose O.
STRUCHINER, Claudio J.
SUAREZ-KURTZ, Guilherme
Citação
PHARMACOGENOMICS, v.12, n.9, p.1293-1303, 2011
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aim: Polymorphisms in the CYP3A5 and ABCB1 genes have been investigated as modulators of the pharmacokinetics and clinical effects of cyclosporine (CSA) and tacrolimus (TAC) in European, North American and Asian populations, with controversial results. The extensive variation in worldwide frequency distribution of CYP3A5 and ABCB1 polymorphisms is a caveat against the extrapolation of these data to the heterogeneous and admixed Brazilian population. We investigated the effect of CYP3A5 and ABCB1 polymorphisms on CSA and TAC dose-adjusted trough concentration (C(0)/dose) in Brazilian renal transplant recipients, during the first 3 months post-transplantation. Materials & methods: Patients receiving CSA (n = 150) or TAC (n = 151) were genotyped for CYP3A5(star)3 (rs776746, 6986A>G), (star)6(rs10264272, 14690G>A) and (star) 7 (rs41303343, 27131-27132insT) and for ABCB1 1236C>T (rs1128503), 2677G>T/A (rs2032582) and 3435C>T (rs1045642) polymorphisms. We explored the effects of CYP3A5 and ABCB1 polymorphisms, clinical and demographical characteristics on CSA and TAC C(0)/dose under a two-step data ana-lysis strategy by fitting a longitudinal mixed-effects model to the data; first to select the important covariates under a univariate setting and then to fit the final multivariate model. Results: C(0)/dose of TAC was associated with the number of CYP3A5-defective alleles, in a gene-dose manner, throughout the observation period, whereas C0/dose of CSA was associated with body surface area and prednisone dosing. No other significant associations were detected. Conclusion: Individual adjustment of the initial TAC dose according to the CYP3A5 haplotypes comprising the CYP3A5(star)3, (star)6 and (star)7 defective alleles might prove beneficial to Brazilian renal transplant recipients and should be further investigated in prospective trials. Original submitted 5 April 2011; Revision submitted 4 May 2011
Palavras-chave
ABCB1, Brazil, calcineurin inhibitors, cyclosporine, CYP3A5, renal transplant, tacrolimus
Referências
  1. MacPhee IAM, 2004, AM J TRANSPLANT, V4, P914, DOI 10.1111/j.1600-6143.2004.00435.x
  2. KRONBACH T, 1988, CLIN PHARMACOL THER, V43, P630
  3. Anglicheau D, 2003, NEPHROL DIAL TRANSPL, V18, P2409, DOI 10.1093/ndt/gfg381
  4. Wang J, 2009, EXPERT REV MOL DIAGN, V9, P383, DOI [10.1586/erm.09.11, 10.1586/ERM.09.11]
  5. SAEKI T, 1993, J BIOL CHEM, V268, P6077
  6. Mirghani RA, 2006, PHARMACOGENET GENOM, V16, P637, DOI 10.1097/01.fpc.0000230411.89973.1b
  7. Thervet E, 2010, CLIN PHARMACOL THER, V87, P721, DOI 10.1038/clpt.2010.17
  8. Press RR, 2009, THER DRUG MONIT, V31, P187, DOI 10.1097/FTD.0b013e31819c3d6d
  9. Wu KH, 2005, DRUG METAB DISPOS, V33, P1268, DOI 10.1124/dmd.105.004358
  10. Hesselink DA, 2003, CLIN PHARMACOL THER, V74, P245, DOI 10.1016/S0009-9236(03)00168-1
  11. Ferreira PE, 2008, THER DRUG MONIT, V30, P10, DOI 10.1097/FTD.0b013e31815e93c6
  12. Edwards LJ, 2008, STAT MED, V27, P6137, DOI 10.1002/sim.3429
  13. Burckart GJ, 2010, PHARMACOGENOMICS, V11, P227, DOI [10.2217/pgs.09.177, 10.2217/PGS.09.177]
  14. Hesselink DA, 2008, PHARMACOGENET GENOM, V18, P339, DOI 10.1097/FPC.0b013e3282f75f88
  15. MacPhee IAM, 2005, TRANSPLANTATION, V79, P499, DOI 10.1097/01.TP.0000151766.73249.12
  16. Dandara C, 2005, CANCER LETT, V225, P275, DOI 10.1016/j.canlet.2004.11.004
  17. Bandur S, 2008, TRANSPLANTATION, V86, P1206, DOI 10.1097/TP.0b013e318187c4d1
  18. Haufroid V, 2004, PHARMACOGENETICS, V14, P147, DOI 10.1097/01.pfc.0000114719.42625.e8
  19. Estrela RCE, 2008, PHARMACOGENOMICS, V9, P267, DOI 10.2217/14622416.9.3.267
  20. Staatz CE, 2010, CLIN PHARMACOKINET, V49, P141, DOI 10.2165/11317350-000000000-00000
  21. Lee SJ, 2003, PHARMACOGENETICS, V13, P461, DOI 10.1097/01.fpc.0000054117.14659.ac
  22. Quteineh L, 2008, BASIC CLIN PHARMACOL, V103, P546, DOI 10.1111/j.1742-7843.2008.00327.x
  23. MacPhee IAM, 2008, TRANSPLANTATION, V85, P163, DOI 10.1097/TP.0b013e3181609054
  24. Kuehl P, 2001, NAT GENET, V27, P383, DOI 10.1038/86882
  25. Wang P, 2010, PHARMACOGENOMICS, V11, P1389, DOI [10.2217/pgs.10.105, 10.2217/PGS.10.105]
  26. Hesselink DA, 2003, BRIT J CLIN PHARMACO, V56, P327, DOI 10.1046/j.0306-5251.2003.01882.x
  27. Coto E, 2009, TRANSPLANTATION, V88, pS62, DOI 10.1097/TP.0b013e3181afe9e7
  28. Estrela RCE, 2008, CLIN PHARMACOL THER, V84, P205, DOI 10.1038/clpt.2008.12
  29. Garsa Adam A, 2005, BMC Med Genet, V6, P19, DOI 10.1186/1471-2350-6-19
  30. HAUFROID V, 2006, AM J TRANSPLANT, V6, P2760
  31. HESSELINK DA, 2005, PHARMACOGENOMICS, V6, P267
  32. Lee SJ, 2005, PHARMACOGENOMICS, V6, P357, DOI 10.1517/14622416.6.4.357
  33. Liu TC, 2002, ONCOL REP, V9, P327
  34. Loh PT, 2008, TRANSPL P, V40, P1690, DOI 10.1016/j.transproceed.2008.04.010
  35. Pinheiro J. C., 2000, MIXED EFFECTS MODELS
  36. Press RR, 2010, EUR J CLIN PHARMACOL, V66, P579, DOI 10.1007/s00228-010-0810-9
  37. R Development Core Team, 2009, LANG ENV STAT COMP R
  38. SATTLER M, 1992, DRUG METAB DISPOS, V20, P753
  39. Suarez-Kurtz G., 2007, PHARMACOGENOMICS ADM, P75
  40. Suarez-Kurtz G, 2010, FRONT PHARMACOL, V1, DOI 10.3389/fphar.2010.00118
  41. Suarez-Kurtz G, 2007, PHARMACOGENOMICS, V8, P1299, DOI 10.2217/14622416.8.10.1299
  42. Suarez-Kurtz G, 2008, CLIN PHARMACOL THER, V83, P399, DOI 10.1038/sj.clpt.6100308
  43. Sun B, 2010, THER DRUG MONIT, V32, P715, DOI 10.1097/FTD.0b013e3181fb6ce3
  44. Wang YX, 2009, EUR J CLIN PHARMACOL, V65, P239, DOI 10.1007/s00228-008-0577-4
  45. Ware N, 2010, CURR OPIN MOL THER, V12, P270
  46. Wojnowski L, 2004, PHARMACOGENETICS, V14, P691, DOI 10.1097/00008571-200410000-00007