Homozygous missense mutation in MED25 segregates with syndromic intellectual disability in a large consanguineous family

Carregando...
Imagem de Miniatura
Citações na Scopus
22
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMJ PUBLISHING GROUP
Autores
FIGUEIREDO, Thalita
MELO, Uira Souto
PESSOA, Andre Luiz Santos
KITAJIMA, Joao Paulo
CORREA, Igor
ZATZ, Mayana
SANTOS, Silvana
Citação
JOURNAL OF MEDICAL GENETICS, v.52, n.2, p.123-127, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Intellectual disability (ID) is a highly heterogeneous condition affecting 2% of the population worldwide. In a field study conducted in a highly inbred area of Northeastern Brazil, we investigated a consanguineous family in which seven adults presented syndromic ID. Methods Genome-Wide Human SNP Array 6.0 (Affymetrix) microarray was used to determine regions of homozygosity-by-descent and whole exome sequencing (WES) was performed in one affected individual using Extended Nextera Rapid-Capture Exome and Illumina HiSeq2500. Results We found two regions with an logarithm of the odds (LOD) score of 3.234: a region spanning 4.0 Mb in 19q13.32-q13.33 and a pericentromeric 20 Mb area in chromosome 2 (2p12-q11.2). WES disclosed in the critical region of chromosome 19 a homozygous variant (c.418C> T, p.Arg140Trp) in Mediator complex subunit 25 (MED25), predicted as deleterious by PolyPhen-2, Provean, Mutation Taster and Sorting Intolerant From Tolerant (SIFT). MED25 is a component of the Mediator complex, involved in regulation of transcription of nearly all RNA polymerase II-dependent genes. Deleterious mutations in MED12, MED17 and MED23 have already been associated with ID. Conclusions These findings demonstrate that the combination of field investigation of families in highly inbred regions with modern technologies is an effective way for identifying new genes associated with ID.
Palavras-chave
Referências
  1. Abecasis GR, 2002, NAT GENET, V30, P97, DOI 10.1038/ng786
  2. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248
  3. Afroze B, 2013, J PAK MED ASSOC, V63, P106
  4. Arber S, 2000, CELL, V101, P485, DOI 10.1016/S0092-8674(00)80859-4
  5. Baple EL, 2014, AM J HUM GENET, V94, P87, DOI 10.1016/j.ajhg.2013.10.001
  6. Choi Y, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046688
  7. Cingolani P, 2012, FLY, V6, P80, DOI 10.4161/fly.19695
  8. Collins SR, 2007, NATURE, V446, P806, DOI 10.1038/nature05649
  9. FONSECA LGD, 1970, SOC BIOL, V17, P324
  10. FREIREMAIA N, 1957, AM J HUM GENET, V9, P284
  11. Freire-Maia N, 1989, AM J MED GENET, V35, P115
  12. Garshasbi M, 2011, AM J MED GENET A, V155A, P1976, DOI 10.1002/ajmg.a.34077
  13. Hashimoto S, 2011, SCIENCE, V333, P1161, DOI 10.1126/science.1206638
  14. Kaufmann R, 2010, AM J HUM GENET, V87, P667, DOI 10.1016/j.ajhg.2010.09.016
  15. Kuss AW, 2011, HUM GENET, V129, P141, DOI 10.1007/s00439-010-0907-3
  16. Leal A, 2009, NEUROGENETICS, V10, P275, DOI 10.1007/s10048-009-0183-3
  17. Lee HK, 2007, EMBO J, V26, P3545, DOI 10.1038/sj.emboj.7601797
  18. Li H, 2010, BIOINFORMATICS, V26, P589, DOI 10.1093/bioinformatics/btp698
  19. Malik S, 2005, TRENDS BIOCHEM SCI, V30, P256, DOI 10.1016/j.tibs.2005.03.009
  20. McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110
  21. Najmabadi H, 2011, NATURE, V478, P57, DOI 10.1038/nature10423
  22. Nakamura Y, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1242
  23. Napoli C, 2012, BIOCHIMIE, V94, P579, DOI 10.1016/j.biochi.2011.09.016
  24. Ng PC, 2003, NUCLEIC ACIDS RES, V31, P3812, DOI 10.1093/nar/gkg509
  25. Plagnol V, 2012, BIOINFORMATICS, V28, P2747, DOI 10.1093/bioinformatics/bts526
  26. Rafiq MA, 2010, CLIN GENET, V78, P478, DOI 10.1111/j.1399-0004.2010.01405.x
  27. Rana R, 2011, MOL CELL BIOL, V31, P466, DOI 10.1128/MCB.00847-10
  28. Risheg H, 2007, NAT GENET, V39, P451, DOI 10.1038/ng1992
  29. Ropers HH, 2010, ANNU REV GENOM HUM G, V11, P161, DOI 10.1146/annurev-genom-082509-141640
  30. Ruschendorf F, 2005, BIOINFORMATICS, V21, P2123, DOI 10.1093/bioinformatics/bti264
  31. Schwartz CE, 2007, J MED GENET, V44, P472, DOI 10.1136/jmg.2006.048637
  32. Schwarz JM, 2010, NAT METHODS, V7, P575, DOI 10.1038/nmeth0810-575
  33. Seelow D, 2009, NUCLEIC ACIDS RES, V37, P593
  34. Sela D, 2013, J BIOL CHEM, V288, P26179, DOI 10.1074/jbc.M113.496968
  35. Shi Z, 2014, BIOCHEM PHARMACOL, V90, P425, DOI 10.1016/j.bcp.2014.06.016
  36. Tsai KL, 2014, CELL, V157, P1430, DOI 10.1016/j.cell.2014.05.015
  37. Verger A, 2013, NUCLEIC ACIDS RES, V41, P4847, DOI 10.1093/nar/gkt199
  38. Vulto-van Silfhout AT, 2013, AM J HUM GENET, V92, P401, DOI 10.1016/j.ajhg.2013.01.007
  39. Wang SY, 2012, J CELL BIOL, V197, P857, DOI 10.1083/jcb.201110131
  40. Weller M, 2012, AM J HUM BIOL, V24, P835, DOI 10.1002/ajhb.22328