INTERSET STRETCHING VS. TRADITIONAL STRENGTH TRAINING: EFFECTS ON MUSCLE STRENGTH AND SIZE IN UNTRAINED INDIVIDUALS

Nenhuma Miniatura disponível
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
SOUZA, Eduardo O. De
MOREIRA, Daniella C. B.
ALONSO, Angelica Castilho
TEIXEIRA, Caue Vasquez La Scala
WADHI, Tanuj
RAUCH, Jacob
BOCALINI, Danilo S.
PEREIRA, Paulo Eduardo De Assis
Citação
JOURNAL OF STRENGTH AND CONDITIONING RESEARCH, v.33, suppl.1, p.S159-S166, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study compared the effects of 8 weeks of traditional strength training (TST) and interset stretching (ISS) combined with TST on muscular adaptations. Twenty-nine sedentary, healthy adults were randomly assigned to either the TST (n = 17; 28.0 +/- 6.4 years) or ISS (n = 12; 26.8 +/- 6.1 years) group. Both groups performed 6 strength exercises encompassing the whole body (bench press, elbow extension, seated rows, biceps curl, knee extension, and knee flexion) performing 4 sets of 8-12 repetition maximum (RM) with a 90-second rest between sets. However, the ISS group performed static passive stretching, at maximum amplitude, for 30 seconds between sets. Both groups performed training sessions twice a week on nonconsecutive days. Muscle strength (i.e., 1RM) and hypertrophy (i.e., muscle thickness [MT] by ultrasonography) were measured at pre-test and after 8 weeks of training. Both groups increased 1RM bench press (p <= 0.0001): ISS (23.4%, CIdiff: 4.3 kg-11.1 kg) and TST (22.2%, CIdiff: 5.2 kg-10.9 kg) and 1RM knee extension (p <= 0.0001): ISS (25.5%, CIdiff: 5.6 kg-15.0 kg) and TST (20.6%, CIdiff: 4.4 kg-12.3 kg). Both groups increased MT of biceps brachii (BIMT), triceps brachii (TRMT), and rectus femoris (RFMT) (p <= 0.0001). BIMT: ISS (7.2%, CIdiff: 1.14-3.5 mm) and TST (4.7%, CIdiff: 0.52.5 mm), TRMT: ISS (12.3%, CIdiff: 1.1-4.4 mm) and TST (7.1%, CIdiff: 0.3-3.1 mm), and RFMT: ISS (12.4%, CIdiff: 1.1-2.9 mm) and TST (9.1%, CIdiff: 0.7-2.2 mm). For vastus lateralis muscle thickness (VLMT) and sum of the 4 muscle thickness sites (Sigma MT), there was a significant group by time interaction (p <= 0.02) in which ISS increased VLMT and Sigma MT to a greater extent than TST. Vastus lateralis muscle thickness: ISS (17.0%, CIdiff: 1.5-3.1 mm) and TST (7.3%, CIdiff: 0.7-2.1 mm), and Sigma MT: ISS (10.5%, CIdiff: 6.5-9.0 mm) and TST (6.7%, CIdiff: 3.9-8.3 mm). Although our findings might suggest a benefit of adding ISS into TST for optimizing muscle hypertrophy, our data are not sufficient enough to conclude that ISS is superior to TST for inducing muscle hypertrophic adaptations. More studies are warranted to elucidate the effects of ISS compared with TST protocols on skeletal muscle. However, our findings support that adding ISS to regular TST regimens does not compromise muscular adaptations during the early phase of training (<8 weeks) in untrained individuals.
Palavras-chave
resistance training, muscle hypertrophy, combined regimens, static stretch
Referências
  1. ANTONIO J, 1993, J APPL PHYSIOL, V75, P1263
  2. Atherton PJ, 2009, J PHYSIOL-LONDON, V587, P3719, DOI 10.1113/jphysiol.2009.169854
  3. BARNETT JG, 1980, AM J PHYSIOL, V239, pC39
  4. Blazevich AJ, 2014, J APPL PHYSIOL, V117, P452, DOI 10.1152/japplphysiol.00204.2014
  5. Bastos CLB, 2013, J STRENGTH COND RES, V27, P2465, DOI 10.1519/JSC.0b013e31828054b7
  6. Cohen J., 1988, STAT POWER ANAL BEHA
  7. Coutinho EL, 2004, BRAZ J MED BIOL RES, V37, P1853, DOI 10.1590/S0100-879X2004001200011
  8. Fowles JR, 2000, CAN J APPL PHYSIOL, V25, P165, DOI 10.1139/h00-012
  9. Garcia-Lopez D, 2010, J STRENGTH COND RES, V24, P1361, DOI 10.1519/JSC.0b013e3181cf780d
  10. GOLDSPINK DF, 1995, AM J PHYSIOL-ENDOC M, V268, pE288
  11. Haff GG, 2015, ESSENTIALS STRENGTH
  12. HOLLY RG, 1980, AM J PHYSIOL, V238, pC62
  13. Jones KD, 2002, J RHEUMATOL, V29, P1041
  14. Kokkonen J, 2007, MED SCI SPORT EXER, V39, P1825, DOI 10.1249/mss.0b013e3181238a2b
  15. Kokkonen J, 2010, J STRENGTH COND RES, V24, P502, DOI 10.1519/JSC.0b013e3181c06ca0
  16. Kraemer WJ, 2002, MED SCI SPORT EXER, V34, P364, DOI 10.1249/MSS.0b013e3181915670
  17. Kraemer WJ, 2004, MED SCI SPORT EXER, V36, P697, DOI 10.1249/01.MSS.0000122734.25411.CF
  18. Kubo K, 2002, J PHYSIOL-LONDON, V538, P219, DOI 10.1113/jphysiol.2001.012703
  19. LEIVSETH G, 1989, CLIN SCI, V76, P113, DOI 10.1042/cs0760113
  20. Mangine GT, 2015, PHYSIOL REP, V3, DOI 10.14814/phy2.12472
  21. Mohamad NI, 2011, STRENGTH COND J, V33, P81, DOI 10.1519/SSC.0b013e3181fe7164
  22. Nakamura M, 2012, EUR J APPL PHYSIOL, V112, P2749, DOI 10.1007/s00421-011-2250-3
  23. Ogasawara R, 2012, INTERV MED APPL SCI, V4, P217, DOI 10.1556/IMAS.4.2012.4.7
  24. Paradisis GP, 2014, J STRENGTH COND RES, V28, P154, DOI 10.1519/JSC.0b013e318295d2fb
  25. Russ DW, 2008, MED SCI SPORT EXER, V40, P88, DOI 10.1249/mss.0b013e318158e450
  26. Sakamoto K, 2003, AM J PHYSIOL-ENDOC M, V285, pE1081, DOI 10.1152/ajpendo.00228.2003
  27. Silva-Batista C, 2016, MED SCI SPORT EXER, V48, P1678, DOI 10.1249/MSS.0000000000000945
  28. Simao R, 2011, J STRENGTH COND RES, V25, P1333, DOI 10.1519/JSC.0b013e3181da85bf
  29. Simic L, 2013, SCAND J MED SCI SPOR, V23, P131, DOI 10.1111/j.1600-0838.2012.01444.x
  30. Simpson CL, 2017, SCAND J MED SCI SPOR, V27, P1597, DOI 10.1111/sms.12822
  31. SOLA OM, 1973, EXP NEUROL, V41, P76, DOI 10.1016/0014-4886(73)90182-9
  32. Souza AC, 2013, J HUM KINET, V36, P127, DOI 10.2478/hukin-2013-0013