Exercise Training Favorably Modulates Gene and Protein Expression That Regulate Arterial Cholesterol Content in CETP Transgenic Mice

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
GOMES-KJERULF, Diego
MACHADO-LIMA, Adriana
ROCCO, Debora D. F. M.
MACHADO, Ubiratan F.
Citação
FRONTIERS IN PHYSIOLOGY, v.9, article ID 502, 11p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aerobic exercise training (AET) improves the reverse cholesterol transport (RCT) in cholesteryl ester transfer protein-transgenic (CETP-tg) mice. We aimed at investigating the role of AET in the expression of genes and proteins involved in lipid flux in the aorta and macrophages of CETP-tg mice. Three-month-old male mice were randomly divided into trained (T; treadmill 15 m/min; 30 min/day) and sedentary (S) groups. After 6 weeks, peritoneal macrophages and the aortic arch were obtained immediately (0 h) or 48 h after the last exercise session. mRNA was determined by RT-qPCR, protein levels by immunoblot and C-14-cholesterol efflux determined in macrophages. AET did not change body weight, plasma cholesterol, triglycerides, glucose and CETP activity. In macrophages, at time 0 h, a higher expression of genes that encode PPAR gamma, ABCA-1 and a lower expression of MCP-1 and IL-10, was observed in T as compared to S. After 48 h, lower expressions of MCP-1 and PPAR gamma genes were observed in T mice. Increase in ABCA-1, SR-BI and IL-6 and decrease of LOX-1, MCP-1, TNF and IL-10 gene expression was observed in the aorta of T compared to S mice (0 h) and LOX-1 and MCP-1 remained diminished after 48 h. The protein level of MCP-1 and SR-BI in the aortic arch was unchanged in T animals after 48 h as compared to S, but LOX-1 was reduced confirming data of gene expression. The apo A-I and the HDL2 mediated-cholesterol efflux (8 and 24 h) were not different between T and S animals. In the presence of CETP, AET positively influences gene expression in the arterial wall and macrophages of CETP-tg mice contributing to the RCT and prevention of atherosclerosis. These changes were perceptible immediately after the exercise session and were influenced by the presence of CETP although independent of changes in its activity. Reductions in gene and protein expression of LOX-1 were parallel and reflect the ability of exercise training in reducing the uptake of modified LDL by the arterial wall macrophages.
Palavras-chave
exercise training, macrophage cholesterol efflux, reverse cholesterol transport, cholesterol ester transfer protein, atherosclerosis
Referências
  1. Azhar S, 2002, MOL CELL ENDOCRINOL, V195, P1, DOI 10.1016/S0303-7207(02)00222-8
  2. Barter PJ, 2007, NEW ENGL J MED, V357, P2109, DOI 10.1056/NEJMoa0706628
  3. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  4. Bouhlel MA, 2007, CELL METAB, V6, P137, DOI 10.1016/j.cmet.2007.06.010
  5. Bowman L, 2017, AM HEART J, V187, P182, DOI 10.1016/j.ahj.2017.02.021
  6. Brites F, 2004, METABOLISM, V53, P1262, DOI 10.1016/j.metabol.2004.05.002
  7. Butcher LR, 2008, MED SCI SPORT EXER, V40, P1263, DOI 10.1249/MSS.0b013e31816c091d
  8. Calabresi L, 2010, TRENDS CARDIOVAS MED, V20, P50, DOI 10.1016/j.tcm.2010.03.007
  9. Cao XJ, 2017, CELL TISSUE RES, V368, P145, DOI 10.1007/s00441-016-2518-3
  10. Cappel DA, 2013, MOL METAB, V2, P457, DOI 10.1016/j.molmet.2013.08.007
  11. Cassado AD, 2015, FRONT IMMUNOL, V6, DOI 10.3389/fimmu.2015.00225
  12. Castiglioni S, 2017, ATHEROSCLEROSIS, V266, P8, DOI 10.1016/j.atherosclerosis.2017.09.012
  13. Chawla A, 2001, MOL CELL, V7, P161, DOI 10.1016/S1097-2765(01)00164-2
  14. Chen B, 2016, VASC PHARMACOL, V85, P1, DOI 10.1016/j.vph.2015.08.012
  15. Cheung MC, 1996, BBA-LIPID LIPID MET, V1303, P103, DOI 10.1016/0005-2760(96)00082-3
  16. Chinetti G, 2001, NAT MED, V7, P53
  17. Cornelissen VA, 2013, J AM HEART ASSOC, V2, DOI 10.1161/JAHA.112.004473
  18. Escola-Gil JC, 2001, J LIPID RES, V42, P241
  19. Ficker ES, 2010, ATHEROSCLEROSIS, V212, P230, DOI 10.1016/j.atherosclerosis.2010.04.030
  20. Go Gwang-woong, 2012, Yale Journal of Biology and Medicine, V85, P19
  21. Guizoni DM, 2016, J TRANSL MED, V14, DOI 10.1186/s12967-016-0972-z
  22. Guo W, 2016, NUTR METAB, V13, DOI 10.1186/s12986-016-0082-1
  23. Halverstadt A, 2007, METABOLISM, V56, P444, DOI 10.1016/j.metabol.2006.10.019
  24. Hellerstein M, 2014, CURR OPIN LIPIDOL, V25, P40, DOI 10.1097/MOL.0000000000000050
  25. Hermann S, 2016, J NUCL MED, V57, P1420, DOI 10.2967/jnumed.115.171132
  26. Iborra RT, 2008, SCAND J MED SCI SPOR, V18, P742, DOI 10.1111/j.1600-0838.2007.00748.x
  27. Imamura H, 2013, INT J SPORTS MED, V34, P398, DOI 10.1055/s-0032-1327651
  28. Kraus WE, 2002, NEW ENGL J MED, V347, P1483, DOI 10.1056/NEJMoa020194
  29. Lee DC, 2014, J AM COLL CARDIOL, V64, P472, DOI 10.1016/j.jacc.2014.04.058
  30. Lee JY, 2011, AM J PHYSIOL-CELL PH, V301, pC886, DOI 10.1152/ajpcell.00042.2011
  31. Lincoff AM, 2017, NEW ENGL J MED, V376, P1933, DOI 10.1056/NEJMoa1609581
  32. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  33. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  34. Mehta JL, 2007, CIRC RES, V100, P1634, DOI 10.1161/CIRCRESAHA.107.149724
  35. Meilhac O, 2001, ARTERIOSCL THROM VAS, V21, P1681, DOI 10.1161/hq1001.097106
  36. Morton RE, 2014, J LIPID RES, V55, P258, DOI 10.1194/jlr.M043646
  37. Mulya A, 2007, ARTERIOSCL THROM VAS, V27, P1828, DOI 10.1161/ATVBA.107.142455
  38. National Research Council (US), 2011, GUIDE CARE USE LAB A
  39. Nijstad N, 2011, GASTROENTEROLOGY, V140, P1043, DOI 10.1053/j.gastro.2010.11.055
  40. Ogata M, 2009, ATHEROSCLEROSIS, V205, P413, DOI 10.1016/j.atherosclerosis.2009.01.008
  41. Oliveira HCF, 2011, IUBMB LIFE, V63, P248, DOI 10.1002/iub.448
  42. Pinto PR, 2015, LIPIDS HEALTH DIS, V14, DOI 10.1186/s12944-015-0093-3
  43. Rocco DDFM, 2011, LIPIDS, V46, P617, DOI 10.1007/s11745-011-3555-z
  44. Schnohr P, 2015, J AM COLL CARDIOL, V65, P411, DOI 10.1016/j.jacc.2014.11.023
  45. Schwartz GG, 2012, NEW ENGL J MED, V367, P2089, DOI 10.1056/NEJMoa1206797
  46. Shih PT, 1999, J CLIN INVEST, V103, P613, DOI 10.1172/JCI5710
  47. Sondergaard E, 2014, METABOLISM, V63, P61, DOI 10.1016/j.metabol.2013.08.011
  48. STEIN O, 1986, ARTERIOSCLEROSIS, V6, P70, DOI 10.1161/01.ATV.6.1.70
  49. Sviridov D, 2003, J LIPID RES, V44, P522, DOI 10.1194/jlr.M200436-JLR200
  50. Thomas AW, 2012, J APPL PHYSIOL, V112, P806, DOI 10.1152/japplphysiol.00864.2011
  51. Umpierre D, 2013, DIABETOLOGIA, V56, P242, DOI 10.1007/s00125-012-2774-z
  52. Vaisman BL, 2015, BIOMED RES INT, DOI 10.1155/2015/607120
  53. van Capelleveen JC, 2015, J CLIN LIPIDOL, V9, P396, DOI 10.1016/j.jacl.2015.01.006
  54. Vassiliou G, 2004, J LIPID RES, V45, P1683, DOI 10.1194/jlr.M400051-JLR200
  55. Wu XD, 2014, INT J SPORTS MED, V35, P344, DOI 10.1055/s-0033-1349075
  56. Yakeu G, 2010, ATHEROSCLEROSIS, V212, P668, DOI 10.1016/j.atherosclerosis.2010.07.002