Host feeding patterns of Nyssorhynchus darlingi (Diptera: Culicidae) in the Brazilian Amazon

Carregando...
Imagem de Miniatura
Citações na Scopus
6
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
NAGAKI, Sandra Sayuri
CHAVES, Leonardo S. M.
BERGO, Eduardo S.
LAPORTA, Gabriel Z.
CONN, Jan E.
SALLUM, Maria Anice Mureb
Citação
ACTA TROPICA, v.213, article ID 105751, 9p, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Nyssorhynchus darlingi (Root) is the dominant malaria vector in the Brazilian Amazon River basin, with additional Anophelinae Grassi species involved in local and regional transmission. Mosquito blood-feeding behavior is an essential component to define the mosquito-human contact rate and shape the transmission cycle of vector-borne diseases. However, there is little information on the host preferences and blood-feeding behavior of Anophelinae vectors in rural Amazonian landscapes. The barrier screen sampling (BSS) method was employed to sample females from 34 peridomestic habitats in 27 rural communities from 11 municipalities in the Brazilian Amazon states of Acre, Amazonas, Par ' a and Rondonia, from August 2015 to November 2017. Nyssorhynchus darlingi comprised 97.94% of the females collected resting on barrier screens, and DNA sequence comparison detected 9 vertebrate hosts species. The HBI index ranged from 0.03-1.00. Results revealed the plasticity of Ny. darlingi in blood-feeding on a wide range of mainly mammalian hosts. In addition, the identification of blood meal sources using silica-dried females is appropriate for studies of human malaria vectors in remote locations.
Palavras-chave
Human blood index, blood-feeding behavior, rural communities, malaria, Amazon
Referências
  1. Baird JK, 2017, BMC PUBLIC HEALTH, V17, DOI 10.1186/s12889-017-4454-x
  2. Benelli G, 2017, ACTA TROP, V174, P91, DOI 10.1016/j.actatropica.2017.06.028
  3. BOREHAM PFL, 1973, B WORLD HEALTH ORGAN, V48, P605
  4. Bradshaw WE, 2018, P NATL ACAD SCI USA, V115, P1009, DOI 10.1073/pnas.1717502115
  5. Burkot TR, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-49
  6. Cohen JM, 2017, MALARIA J, V16, DOI 10.1186/s12936-017-2106-3
  7. Barbosa LMC, 2016, ACTA TROP, V164, P216, DOI 10.1016/j.actatropica.2016.09.018
  8. Davidson JR, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-018-3031-1
  9. DEANE L. M., 1949, REV SERV ESPECIAL SAUDE PUBLICA, V2, P793
  10. Ferguson HM, 2010, PLOS MED, V7, DOI 10.1371/journal.pmed.1000303
  11. Forattini OP, 2002, CULICIDOLOGIA MED ID
  12. Foster PG, 2017, ROY SOC OPEN SCI, V4, DOI 10.1098/rsos.170758
  13. Garrett-Jones C., 1964, Bulletin of the World Health Organization, V30, P241
  14. Gatton ML, 2013, EVOLUTION, V67, P1218, DOI 10.1111/evo.12063
  15. Grieco JP, 2002, J AM MOSQUITO CONTR, V18, P307
  16. HESS AD, 1968, MOSQ NEWS, V28, P386
  17. Hiwat H, 2011, PARASITE VECTOR, V4, DOI 10.1186/1756-3305-4-177
  18. Holderman CJ, 2018, J MED ENTOMOL, V55, P230, DOI 10.1093/jme/tjx171
  19. Keven JB, 2017, PARASITE VECTOR, V10, DOI 10.1186/s13071-017-2038-3
  20. Lardeux F, 2007, MALARIA J, V6, DOI 10.1186/1475-2875-6-8
  21. Lefevre T, 2009, AM J TROP MED HYG, V81, P1023, DOI 10.4269/ajtmh.2009.09-0124
  22. Logue K, 2016, PLOS NEGLECT TROP D, V10, P1, DOI 10.1371/J0URNAL.PNTD.0004512
  23. Manly B., 1993, RESOURCE SELECTION A
  24. MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
  25. Miyake T, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-40509-6
  26. de Barros FSM, 2007, J VECTOR ECOL, V32, P54, DOI 10.3376/1081-1710(2007)32[54:PAACFA]2.0.CO;2
  27. Moreno M, 2017, PLOS NEGLECT TROP D, V11, P1, DOI 10.1371/J0URNAL.PNTD.0005337
  28. O'Donnell AJ, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-019-3513-9
  29. Orsborne J, 2018, MALARIA J, V17, DOI 10.1186/s12936-018-2632-7
  30. Pollard EJM, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-019-3291-4
  31. Prussing C, 2018, MALARIA J, V17, DOI 10.1186/s12936-018-2234-4
  32. Reeves LE, 2018, COMMUN BIOL, V1, DOI 10.1038/s42003-018-0096-5
  33. Reeves LE, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0190633
  34. Russell TL, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1168-y
  35. Russell TL, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-56
  36. Saavedra MP, 2019, PARASITE VECTOR, V12, DOI 10.1186/s13071-019-3619-0
  37. Sallum MAM, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2753-7
  38. Savage R.E., 1931, FISHERY INVESTIGATIO, V212, P188
  39. Schnell IB, 2018, MOL ECOL RESOUR, V18, P1282, DOI 10.1111/1755-0998.12912
  40. Sinka ME, 2010, PARASITE VECTOR, V3, DOI 10.1186/1756-3305-3-72
  41. Stevenson JC, 2016, J MED ENTOMOL, V53, P1482, DOI 10.1093/jme/tjw091
  42. Tadei WP, 1998, AM J TROP MED HYG, V59, P325, DOI 10.4269/ajtmh.1998.59.325
  43. Takken W, 2002, TROP MED INT HEALTH, V7, P1022, DOI 10.1046/j.1365-3156.2002.00983.x
  44. Takken W, 2013, ANNU REV ENTOMOL, V58, P433, DOI 10.1146/annurev-ento-120811-153618
  45. Taylor PG, 1996, MOL BIOL EVOL, V13, P283, DOI 10.1093/oxfordjournals.molbev.a025566
  46. Tedrow RE, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0007176
  47. Townzen JS, 2008, MED VET ENTOMOL, V22, P386, DOI 10.1111/j.1365-2915.2008.00760.x
  48. Voorham J, 2002, REV SAUDE PUBL, V36, P75, DOI 10.1590/S0034-89102002000100012
  49. WHO, 2017, LIC CC NC SA 3 0 IGO
  50. Zimmerman RH, 2006, J MED ENTOMOL, V43, P947, DOI 10.1603/0022-2585(2006)43[947:BHOASD]2.0.CO;2
  51. Zimmerman RH, 2013, MALARIA J, V12, DOI 10.1186/1475-2875-12-262