Tractography of the ansa lenticularis in the human brain

Carregando...
Imagem de Miniatura
Citações na Scopus
7
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
LI, Mengjun
ZHANG, Zhiping
WU, Xiaolong
WANG, Xu
LIU, Xiaohai
LIANG, Jiantao
CHEN, Ge
LI, Mingchu
Citação
CLINICAL ANATOMY, v.35, n.3, p.269-279, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The aim of this study was to make a thorough investigation of the trajectory of the ansa lenticularis (AL) and its subcomponents using high-resolution fiber-tracking tractography. The subcomponents of the AL were reconstructed from one region of interest (ROI) in the area of the globus pallidus combined with another ROI in the red nucleus, substantia nigra, subthalamic nucleus, or thalamus. This fiber-tracking protocol was tested in an HCP-1065 template, 35 healthy subjects from Massachusetts General Hospital (MGH), and 20 healthy subjects from the human connectome project (HCP) using generalized q-sampling imaging (GQI)-based tractography. Quantitative anisotropy and fractional anisotropy were also computed for the AL subcomponents. The subcomponents of the AL could be reconstructed in the HCP-1065 template, 35 MGH healthy subjects, and 20 HCP healthy subjects. The AL descends from the globus pallidus and joins the ansa peduncularis for a short distance, subdividing later into fibers that continue separately to the red nucleus, substantia nigra, subthalamic nucleus, and thalamus. The study demonstrated the trajectory of the ansa lenticularis and its subcomponents using GQI-based tractography, improving our understanding of the anatomical connectivity between the globus pallidus and the thalamo-subthalamic region in the human brain. One Sentence Summary The investigation of the ansa lenticularis and its subcomponents using high-resolution diffusion images based tractography.
Palavras-chave
ansa lenticularis, generalized Q-sampling imaging, globus pallidus, tractography, white matter
Referências
  1. Adil SM, 2021, NEUROIMAGE, V237, DOI 10.1016/j.neuroimage.2021.118135
  2. Aggarwal M, 2013, NEUROIMAGE, V74, P117, DOI 10.1016/j.neuroimage.2013.01.061
  3. Alarcon C, 2014, OPER NEUROSURG, V10, P294, DOI 10.1227/NEU.0000000000000271
  4. Calabrese E, 2015, HUM BRAIN MAPP, V36, P3167, DOI 10.1002/hbm.22836
  5. Celtikci P, 2018, NEURORADIOLOGY, V60, P267, DOI 10.1007/s00234-018-1985-5
  6. Choi CY, 2011, J NEUROSURG, V114, P463, DOI 10.3171/2010.9.JNS10530
  7. Chung BS, 2020, CLIN ANAT, V33, P66, DOI 10.1002/ca.23468
  8. DA, 2005, HUMAN NERVOUS SYSTEM
  9. Desikan RS, 2006, NEUROIMAGE, V31, P968, DOI 10.1016/j.neuroimage.2006.01.021
  10. Fischl B, 2012, NEUROIMAGE, V62, P774, DOI 10.1016/j.neuroimage.2012.01.021
  11. Gungor A, 2019, J NEUROSURG, V130, P716, DOI 10.3171/2017.10.JNS171513
  12. Holanda VM, 2020, NEUROSURGERY, V86, P860, DOI 10.1093/neuros/nyz318
  13. Iacono RP, 1997, ACTA NEUROCHIR, V139, P433, DOI 10.1007/BF01808880
  14. KLINGLER J, 1960, J COMP NEUROL, V115, P333, DOI 10.1002/cne.901150305
  15. Lemaire JJ, 2011, NEUROCHIRURGIE, V57, P52, DOI 10.1016/j.neuchi.2011.04.001
  16. Lemaire JJ, 2011, BRAIN RES, V1371, P43, DOI 10.1016/j.brainres.2010.11.072
  17. Li MJ, 2020, BRAIN RES, V1746, DOI 10.1016/j.brainres.2020.146978
  18. Mori S, 2017, FRONT NEUROANAT, V11, DOI 10.3389/fnana.2017.00016
  19. O'Donnell LJ, 2017, NEUROIMAGE-CLIN, V13, P138, DOI 10.1016/j.nicl.2016.11.023
  20. Panesar SS, 2019, BRAIN STRUCT FUNCT, V224, P907, DOI 10.1007/s00429-018-1812-0
  21. Panesar SS, 2017, NEURORADIOLOGY, V59, P971, DOI 10.1007/s00234-017-1874-3
  22. Peuskens D, 2004, NEUROSURGERY, V55, P1174, DOI 10.1227/01.NEU.0000140843.62311.24
  23. Rozanski VE, 2017, HUM BRAIN MAPP, V38, P1224, DOI 10.1002/hbm.23450
  24. Schlaier JR, 2017, EUR J NEUROSCI, V45, P1623, DOI 10.1111/ejn.13575
  25. Serra C, 2019, OPER NEUROSURG, V17, P311, DOI 10.1093/ons/opy345
  26. Wu Y, 2018, NEUROIMAGE, V181, P16, DOI 10.1016/j.neuroimage.2018.06.019
  27. Wu YP, 2016, FRONT NEUROANAT, V10, DOI 10.3389/fnana.2016.00084
  28. Yeh FC, 2018, NEUROIMAGE, V178, P57, DOI 10.1016/j.neuroimage.2018.05.027
  29. Yeh FC, 2011, NEUROIMAGE, V58, P91, DOI 10.1016/j.neuroimage.2011.06.021
  30. Yeh FC, 2010, IEEE T MED IMAGING, V29, P1626, DOI 10.1109/TMI.2010.2045126
  31. Zeineh MM, 2012, NEUROIMAGE, V62, P2065, DOI 10.1016/j.neuroimage.2012.05.065
  32. Zhang F, 2020, NEUROIMAGE, V220, DOI 10.1016/j.neuroimage.2020.117063
  33. Zhang HL, 2013, NEUROSURGERY, V73, P1044, DOI 10.1227/NEU.0000000000000146