Binary Expression Enhances Reliability of Messaging in Gene Networks

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
ENTROPY, v.22, n.4, article ID 479, 18p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The promoter state of a gene and its expression levels are modulated by the amounts of transcription factors interacting with its regulatory regions. Hence, one may interpret a gene network as a communicating system in which the state of the promoter of a gene (the source) is communicated by the amounts of transcription factors that it expresses (the message) to modulate the state of the promoter and expression levels of another gene (the receptor). The reliability of the gene network dynamics can be quantified by Shannon's entropy of the message and the mutual information between the message and the promoter state. Here we consider a stochastic model for a binary gene and use its exact steady state solutions to calculate the entropy and mutual information. We show that a slow switching promoter with long and equally standing ON and OFF states maximizes the mutual information and reduces entropy. That is a binary gene expression regime generating a high variance message governed by a bimodal probability distribution with peaks of the same height. Our results indicate that Shannon's theory can be a powerful framework for understanding how bursty gene expression conciliates with the striking spatio-temporal precision exhibited in pattern formation of developing organisms.
Palavras-chave
noise in gene networks, binary gene regulation, bursty gene expression, Shannon theory, stochastic modeling
Referências
  1. Abramowitz M, 1972, NBS APPL MATH SERIES, V55
  2. Ashall L, 2009, SCIENCE, V324, P242, DOI 10.1126/science.1164860
  3. Balaban NQ, 2004, SCIENCE, V305, P1622, DOI 10.1126/science.1099390
  4. Balazsi G, 2011, CELL, V144, P910, DOI 10.1016/j.cell.2011.01.030
  5. Barr KA, 2017, BMC SYST BIOL, V11, DOI 10.1186/s12918-017-0485-2
  6. Becskei A, 2000, NATURE, V405, P590, DOI 10.1038/35014651
  7. Belete MK, 2015, PHYS REV E, V92, DOI 10.1103/PhysRevE.92.062716
  8. Blake WJ, 2003, NATURE, V422, P633, DOI 10.1038/nature01546
  9. Boettiger AN, 2009, SCIENCE, V325, P471, DOI 10.1126/science.1173976
  10. Bothma JP, 2015, ELIFE, V4, DOI 10.7554/eLife.07956
  11. Bothma JP, 2014, P NATL ACAD SCI USA, V111, P10598, DOI 10.1073/pnas.1410022111
  12. Bowsher CG, 2012, P NATL ACAD SCI USA, V109, pE1320, DOI 10.1073/pnas.1119407109
  13. Cao ZX, 2020, P NATL ACAD SCI USA, V117, P4682, DOI 10.1073/pnas.1910888117
  14. Chalancon G, 2012, TRENDS GENET, V28, P221, DOI 10.1016/j.tig.2012.01.006
  15. Cheong R, 2011, SCIENCE, V334, P354, DOI 10.1126/science.1204553
  16. Chubb JR, 2006, CURR BIOL, V16, P1018, DOI 10.1016/j.cub.2006.03.092
  17. Delbruck M., 1940, J CHEM PHYS, V8, P120, DOI 10.1063/1.1750549
  18. Elowitz MB, 2002, SCIENCE, V297, P1183, DOI 10.1126/science.1070919
  19. Falo-Sanjuan J, 2020, DEV GROWTH DIFFER, V62, P4, DOI 10.1111/dgd.12644
  20. Fukaya T, 2016, CELL, V166, P358, DOI 10.1016/j.cell.2016.05.025
  21. Garcia HG, 2013, CURR BIOL, V23, P2140, DOI 10.1016/j.cub.2013.08.054
  22. Gatenby RA, 2013, B MATH BIOL, V75, P589, DOI 10.1007/s11538-013-9821-x
  23. Ghorbani M, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01446
  24. Granados AA, 2018, P NATL ACAD SCI USA, V115, P6088, DOI 10.1073/pnas.1716659115
  25. Gregor T, 2007, CELL, V130, P153, DOI 10.1016/j.cell.2007.05.025
  26. Halpern KB, 2015, MOL CELL, V58, P147, DOI 10.1016/j.molcel.2015.01.027
  27. Holloway DM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0176228
  28. Hooshangi S, 2006, CHAOS, V16, DOI 10.1063/1.2208927
  29. Innocentini GCP, 2007, J MATH BIOL, V55, P413, DOI 10.1007/s00285-007-0090-x
  30. Jaeger J, 2004, NATURE, V430, P368, DOI 10.1038/nature02678
  31. Janssens H, 2006, NAT GENET, V38, P1159, DOI 10.1038/ng1886
  32. Kim AR, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003243
  33. Kussell E, 2005, SCIENCE, V309, P2075, DOI 10.1126/science.1114383
  34. Lammers NC, 2020, P NATL ACAD SCI USA, V117, P836, DOI 10.1073/pnas.1912500117
  35. Larsson AJM, 2019, NATURE, V565, P251, DOI 10.1038/s41586-018-0836-1
  36. Levchenko A, 2014, CURR OPIN BIOTECH, V28, P156, DOI 10.1016/j.copbio.2014.05.002
  37. Little SC, 2013, CELL, V154, P789, DOI 10.1016/j.cell.2013.07.025
  38. Liu Y., 2019, FUNCTIONAL ECOLOGY, P1, DOI 10.1101/655639
  39. Manu, 2009, PLOS BIOL, V7, P591, DOI 10.1371/journal.pbio.1000049
  40. Milo R, 2010, NUCLEIC ACIDS RES, V38, pD750, DOI 10.1093/nar/gkp889
  41. Munsky B, 2012, SCIENCE, V336, P183, DOI 10.1126/science.1216379
  42. Nevozhay D, 2009, P NATL ACAD SCI USA, V106, P5123, DOI 10.1073/pnas.0809901106
  43. Ochiai H, 2014, SCI REP-UK, V4, DOI 10.1038/srep07125
  44. Pare A, 2009, CURR BIOL, V19, P2037, DOI 10.1016/j.cub.2009.10.028
  45. Paulsson J, 2005, PHYS LIFE REV, V2, P157, DOI 10.1016/j.plrev.2005.03.003
  46. PECCOUD J, 1995, THEOR POPUL BIOL, V48, P222, DOI 10.1006/tpbi.1995.1027
  47. Raj A, 2006, PLOS BIOL, V4, P1707, DOI 10.1371/journal.pbio.0040309
  48. Ramos AF, 2010, IET SYST BIOL, V4, P311, DOI 10.1049/iet-syb.2010.0058
  49. Ramos AF, 2015, PHYS REV E, V91, DOI 10.1103/PhysRevE.91.020701
  50. Raser JM, 2005, SCIENCE, V309, P2010, DOI 10.1126/science.1105891
  51. REINITZ J, 1995, J EXP ZOOL, V271, P47, DOI 10.1002/jez.1402710106
  52. Reinitz John, 2003, ComPlexUs, V1, P54, DOI 10.1159/000070462
  53. SAVAGEAU MA, 1974, NATURE, V252, P546, DOI 10.1038/252546a0
  54. Senecal A, 2014, CELL REP, V8, P75, DOI 10.1016/j.celrep.2014.05.053
  55. Shahrezaei V, 2008, P NATL ACAD SCI USA, V105, P17256, DOI 10.1073/pnas.0803850105
  56. SHANNON CE, 1948, BELL SYST TECH J, V27, P623, DOI 10.1002/j.1538-7305.1948.tb00917.x
  57. Skinner SO, 2016, ELIFE, V5, DOI 10.7554/eLife.12175
  58. Suter DM, 2011, SCIENCE, V332, P472, DOI 10.1126/science.1198817
  59. Thattai M, 2001, P NATL ACAD SCI USA, V98, P8614, DOI 10.1073/pnas.151588598
  60. Tkacik G, 2008, P NATL ACAD SCI USA, V105, P12265, DOI 10.1073/pnas.0806077105
  61. West J, 2012, SCI REP-UK, V2, DOI 10.1038/srep00802
  62. Xu H, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.128101
  63. Yvinec R., 2017, BURSTING 2 STATE STO, DOI [10.1101/107979, DOI 10.1101/107979]
  64. Zenklusen D, 2008, NAT STRUCT MOL BIOL, V15, P1263, DOI 10.1038/nsmb.1514
  65. Ziv E, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001077
  66. Zoller B, 2018, CELL, V175, P835, DOI 10.1016/j.cell.2018.09.056