Electromyographic activity of pelvic floor muscles in different positions during the use an innovative vaginal educator: Cross-sectional study

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
DUARTE, Natalia de Souza
AZEVEDO, Yury Souza De
FURTADO, Emilly Cassia Soares
ARAUJO, Lorena Jarid Freire De
BENDELACK, Rayanne Mesquita
RODRIGUES, Cibele Nazare Camara
ARAUJO, Nazete dos Santos
NEVES, Pablo Fabiano Moura das
SOARES, Ana Clara Nunes
BARROS, Rayana Carvalho
Citação
PLOS ONE, v.19, n.3, article ID e0291588, 21p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The pelvic floor requires an integrated anatomical structure owing to its multiple functions. Therefore, it is necessary to study methods for improving muscle recruitment during training. This study aimed to analyze the effect of using an innovative vaginal trainer on the bioelectrical activity of the pelvic floor muscles. Pelvic positioning and interference factors, such as age, childbirth, sexual activity, urinary incontinence, and menopause, were also analyzed. A cross-sectional study assessed 30 women using an evaluation form, International Consultation on Incontinence Questionnaire-Short Form, and surface electromyography. The root mean square of a 5-second contraction period, peak root mean square values, area values, % maximal voluntary contraction (root mean square normalized by peak signal), and median frequency were collected. These findings with and without the use of a vaginal educator were compared in the anteversion, neutral, and retroversion pelvic positions. The use of a vaginal educator was found to increase the electromyographic activity of the pelvic floor muscles in the neutral position. In this position, older women showed an increased peak contraction when using the educator. Multiparas also benefited from increased bioelectric activity (root mean square and area). Sexually active women increased their bioelectric activity in a neutral position when using the trainer, exerting less effort in retroversion (%-maximal voluntary contraction). Incontinent and menopausal women exhibited slower body-building activation (decreased frequency) with the device, which requires further investigation. Our innovative biofeedback device induced greater recruitment of muscle fibers, is more effective in the neutral pelvic position, and may be effective in training the pelvic floor muscles, even in women with a greater tendency toward pelvic floor dysfunction.
Palavras-chave
Referências
  1. Abdulaziz M, 2017, CUAJ-CAN UROL ASSOC, V11, pS117, DOI 10.5489/cuaj.4583
  2. Albaladejo-Belmonte M, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21062225
  3. Alshammari S, 2020, CUREUS J MED SCIENCE, V12, DOI 10.7759/cureus.11599
  4. Ashton-Miller JA, 2009, ANNU REV BIOMED ENG, V11, P163, DOI 10.1146/annurev-bioeng-061008-124823
  5. Baracho Elza., 2014, Fisioterapia aplicada a saude da mulher, V5a ed, P1
  6. Bertotto A., 2021, wwwlumeufrgsbr
  7. Bertotto A, 2017, NEUROUROL URODYNAM, V36, P2142, DOI 10.1002/nau.23258
  8. BO K, 1994, NEUROUROL URODYNAM, V13, P35, DOI 10.1002/nau.1930130106
  9. Sartori DVB, 2021, INVESTIG CLIN UROL, V62, P79, DOI 10.4111/icu.20190248
  10. Bocardi DAS, 2018, CLIMACTERIC, V21, P462, DOI 10.1080/13697137.2018.1453493
  11. Burnett LA, 2020, J BIOMECH, V98, DOI 10.1016/j.jbiomech.2019.109436
  12. Capson AC, 2011, J ELECTROMYOGR KINES, V21, P166, DOI 10.1016/j.jelekin.2010.07.017
  13. Chen J, 2020, Zhonghua Yi Xue Za Zhi, V100, P2908, DOI 10.3760/cma.j.cn112137-20200301-00525
  14. Chen L, 2020, INT UROGYNECOL J, V31, P1933, DOI 10.1007/s00192-019-04181-8
  15. Chmielewska D, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0225647
  16. da Silva AVB., 2021, Society and Development, V10
  17. Dannecker Christian, 2005, Archives of Gynecology and Obstetrics, V273, P93, DOI 10.1007/s00404-005-0011-4
  18. Gameiro MO, 2011, CLINICS, V66, P1389, DOI 10.1590/S1807-59322011000800014
  19. Grimes W R., 2022, Pelvic Floor Dysfunction. StatPearls
  20. Hagovska M, 2020, MEDICINE, V99, DOI 10.1097/MD.0000000000018834
  21. Jeon S, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17082799
  22. Jundt K, 2015, DTSCH ARZTEBL INT, V112, P564, DOI 10.3238/arztebl.2015.0564
  23. Kanter G, 2015, INT UROGYNECOL J, V26, P991, DOI 10.1007/s00192-014-2583-7
  24. Machado LD, 2021, WOMEN HEALTH, V61, P490, DOI 10.1080/03630242.2021.1927288
  25. Resende APM, 2012, INT UROGYNECOL J, V23, P1041, DOI 10.1007/s00192-012-1702-6
  26. Mikus M, 2022, OBSTET GYNECOL, V140, P136, DOI 10.1097/AOG.0000000000004843
  27. Mikus M, 2021, MENOPAUSE REV, V20, P193, DOI 10.5114/pm.2021.110558
  28. Milsom I, 2019, CLIMACTERIC, V22, P217, DOI 10.1080/13697137.2018.1543263
  29. Mohktar MS, 2013, MED SCI MONITOR, V19, P1159, DOI 10.12659/MSM.889628
  30. Omodei MS, 2019, J SEX MED, V16, P1938, DOI 10.1016/j.jsxm.2019.09.014
  31. Pereira BM., 2021, Fisioterapia em Movimento, P34
  32. Peters WA, 2000, UROGYNECOLOGY, P13
  33. Petry NM, 2002, GERONTOLOGIST, V42, P92, DOI 10.1093/geront/42.1.92
  34. Pinheiro Brenda de Figueiredo, 2012, Fisioter. mov., V25, P639
  35. Sánchez-García O, 2019, INT UROGYNECOL J, V30, P977, DOI 10.1007/s00192-019-03872-6
  36. Schiavi MC, 2018, FEMALE PELVIC MED RE, V24, P419, DOI 10.1097/SPV.0000000000000463
  37. Tamanini JTN, 2004, REV SAUDE PUBL, V38, P438, DOI 10.1590/S0034-89102004000300015
  38. Tuttle LJ, 2020, PHYSIOTHER THEOR PR, V36, P1340, DOI 10.1080/09593985.2019.1571142
  39. Vodusek DB, 2002, CURR OPIN OBSTET GYN, V14, P509, DOI 10.1097/00001703-200210000-00012
  40. Wallace SL, 2019, CURR OPIN OBSTET GYN, V31, P485, DOI 10.1097/GCO.0000000000000584
  41. Weber-Rajek M, 2020, BIOMED RES INT, V2020, DOI 10.1155/2020/1019872
  42. Wu XL, 2021, ADV THER, V38, P4163, DOI 10.1007/s12325-021-01831-6
  43. Xu ZH, 2022, INT J WOMENS HEALTH, V14, P1149, DOI 10.2147/IJWH.S361755