Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: the pathological building blocks of early Alzheimer's disease

Carregando...
Imagem de Miniatura
Citações na Scopus
128
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY
Autores
EHRENBERG, A. J.
NGUY, A. K.
THEOFILAS, P.
DUNLOP, S.
MEJIA, M. B.
RUEB, U.
Citação
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, v.43, n.5, p.393-408, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
AimsHyperphosphorylated tau neuronal cytoplasmic inclusions (ht-NCI) are the best protein correlate of clinical decline in Alzheimer's disease (AD). Qualitative evidence identifies ht-NCI accumulating in the isodendritic core before the entorhinal cortex. Here, we used unbiased stereology to quantify ht-NCI burden in the locus coeruleus (LC) and dorsal raphe nucleus (DRN), aiming to characterize the impact of AD pathology in these nuclei with a focus on early stages.MethodsWe utilized unbiased stereology in a sample of 48 well-characterized subjects enriched for controls and early AD stages. ht-NCI counts were estimated in 60-m-thick sections immunostained for p-tau throughout LC and DRN. Data were integrated with unbiased estimates of LC and DRN neuronal population for a subset of cases.ResultsIn Braak stage 0, 7.9% and 2.6% of neurons in LC and DRN, respectively, harbour ht-NCIs. Although the number of ht-NCI+ neurons significantly increased by about 1.9x between Braak stages 0 to I in LC (P = 0.02), we failed to detect any significant difference between Braak stage I and II. Also, the number of ht-NCI+ neurons remained stable in DRN between all stages 0 and II. Finally, the differential susceptibility to tau inclusions among nuclear subdivisions was more notable in LC than in DRN.ConclusionsLC and DRN neurons exhibited ht-NCI during AD precortical stages. The ht-NCI increases along AD progression on both nuclei, but quantitative changes in LC precede DRN changes.
Palavras-chave
Alzheimer disease, brain stem, dorsal raphe nucleus, locus coeruleus, Human, unbiased stereology
Referências
  1. Alzheimers Assoc, 2015, ALZHEIMERS DEMENT, V11, P332, DOI 10.1016/j.jalz.2015.02.003
  2. Attems J, 2012, BIOCHEM SOC T, V40, P711, DOI 10.1042/BST20120034
  3. Babulal GM, 2016, AM J GERIAT PSYCHIAT, V24, P1095, DOI 10.1016/j.jagp.2016.04.004
  4. BAKER KG, 1990, J COMP NEUROL, V301, P147, DOI 10.1002/cne.903010202
  5. Bobinski M, 1998, BRAIN RES, V799, P156, DOI 10.1016/S0006-8993(98)00441-7
  6. BRAAK H, 1991, ACTA NEUROPATHOL, V82, P239
  7. Braak H, 2011, J NEUROPATH EXP NEUR, V70, P960, DOI 10.1097/NEN.0b013e318232a379
  8. Braak H, 2011, ACTA NEUROPATHOL, V121, P171, DOI 10.1007/s00401-010-0789-4
  9. Busch C, 1997, NEUROBIOL AGING, V18, P401, DOI 10.1016/S0197-4580(97)00035-3
  10. CHANPALAY V, 1989, J COMP NEUROL, V287, P357, DOI 10.1002/cne.902870307
  11. CHANPALAY V, 1989, J COMP NEUROL, V287, P373, DOI 10.1002/cne.902870308
  12. Crary JF, 2014, ACTA NEUROPATHOL, V128, P755, DOI 10.1007/s00401-014-1349-0
  13. CUMMINGS JL, 1987, ARCH NEUROL-CHICAGO, V44, P389
  14. Alho ATD, 2016, BRAIN STRUCT FUNCT, V221, P3393, DOI 10.1007/s00429-015-1108-6
  15. Duyckaerts C, 2015, ACTA NEUROPATHOL, V129, P749, DOI 10.1007/s00401-015-1390-7
  16. Elobeid A, 2012, ACTA NEUROPATHOL, V123, P97, DOI 10.1007/s00401-011-0906-z
  17. FREEDMAN R, 1975, J COMP NEUROL, V164, P209, DOI 10.1002/cne.901640205
  18. Gannon M, 2015, FRONT NEUROSCI-SWITZ, V9, DOI 10.3389/fnins.2015.00220
  19. GERMAN DC, 1987, NEUROSCIENCE, V21, P305, DOI 10.1016/0306-4522(87)90123-0
  20. GERMAN DC, 1992, ANN NEUROL, V32, P667, DOI 10.1002/ana.410320510
  21. GERMAN DC, 1988, J NEUROSCI, V8, P1776
  22. Grinberg LT, 2009, NEUROPATH APPL NEURO, V35, P406, DOI [10.1111/j.1365-2990.2009.00997.x, 10.1111/j.1365-2990.2008.00997.x]
  23. Grinberg Lea Tenenholz, 2007, Cell and Tissue Banking, V8, P151, DOI 10.1007/s10561-006-9022-z
  24. Grinberg Lea Tenenholz, 2011, Front Neurol, V2, P42, DOI 10.3389/fneur.2011.00042
  25. Grudzien A, 2007, NEUROBIOL AGING, V28, P327, DOI 10.1016/j.neurobiolaging.2006.02.007
  26. Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x
  27. Hahn EA, 2014, AM J GERIAT PSYCHIAT, V22, P1262, DOI 10.1016/j.jagp.2013.04.015
  28. Heinsen H, 2000, J CHEM NEUROANAT, V20, P49, DOI 10.1016/S0891-0618(00)00067-3
  29. Heneka MT, 2010, P NATL ACAD SCI USA, V107, P6058, DOI 10.1073/pnas.0909586107
  30. Jack CR, 2013, LANCET NEUROL, V12, P207, DOI 10.1016/S1474-4422(12)70291-0
  31. Keren NI, 2009, NEUROIMAGE, V47, P1261, DOI 10.1016/j.neuroimage.2009.06.012
  32. Korczyn AD, 2012, J ALZHEIMERS DIS, V29, P275, DOI 10.3233/JAD-2011-110359
  33. LAZARUS LW, 1987, AM J PSYCHIAT, V144, P41
  34. LOUGHLIN SE, 1986, NEUROSCIENCE, V18, P291, DOI 10.1016/0306-4522(86)90155-7
  35. Mackenzie IRA, 2011, ACTA NEUROPATHOL, V122, P111, DOI 10.1007/s00401-011-0845-8
  36. MARCYNIUK B, 1986, NEUROSCI LETT, V64, P247, DOI 10.1016/0304-3940(86)90336-8
  37. Masters MC, 2015, NEUROLOGY, V84, P617, DOI 10.1212/WNL.0000000000001238
  38. McKeith IG, 2005, NEUROLOGY, V65, P1863, DOI 10.1212/01.wnl.0000187889.17253.b1
  39. Montine TJ, 2012, ACTA NEUROPATHOL, V123, P1, DOI 10.1007/s00401-011-0910-3
  40. Morsch R, 1999, J NEUROPATH EXP NEUR, V58, P188, DOI 10.1097/00005072-199902000-00008
  41. Ohm TG, 1997, NEUROBIOL AGING, V18, P393, DOI 10.1016/S0197-4580(97)00034-1
  42. Olszewski J, 1982, CYTOARCHITECTURE HUM
  43. Parvizi J, 2001, ANN NEUROL, V49, P53, DOI 10.1002/1531-8249(200101)49:1<53::AID-ANA30>3.0.CO;2-Q
  44. Potvin O, 2012, SLEEP, V35, P491, DOI 10.5665/sleep.1732
  45. REIFLER BV, 1986, J AM GERIATR SOC, V34, P855
  46. Ross Jennifer A, 2015, Neurobiol Stress, V2, P73
  47. Rub U, 2000, NEUROPATH APPL NEURO, V26, P553, DOI 10.1046/j.0305-1846.2000.00291.x
  48. Rub U, 2016, CURR ALZHEIMER RES, V13, P1178, DOI 10.2174/1567205013666160606100509
  49. Schmitz C, 2005, NEUROSCIENCE, V130, P813, DOI 10.1016/j.neuroscience.2004.08.050
  50. Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089
  51. Scholl M, 2016, NEURON, V89, P971, DOI 10.1016/j.neuron.2016.01.028
  52. Seeley WW, 2009, NEURON, V62, P42, DOI 10.1016/j.neuron.2009.03.024
  53. Simic G, 2009, NEUROPATH APPL NEURO, V35, P532, DOI 10.1111/j.1365-2990.2009.01038.x
  54. Simic G, 2016, PROG NEUROB IN PRESS
  55. Stratmann K, 2016, BRAIN PATHOL, V26, P371, DOI 10.1111/bpa.12289
  56. Team RC, 2015, R LANG ENV STAT COMP
  57. Theofilas P, 2016, ALZHEIMERS IN PRESS
  58. Theofilas P, 2014, J NEUROSCI METH, V226, P171, DOI 10.1016/j.jneumeth.2014.01.030
  59. WEST MJ, 1991, ANAT REC, V231, P482, DOI 10.1002/ar.1092310411
  60. ZWEIG RM, 1988, ANN NEUROL, V24, P233, DOI 10.1002/ana.410240210