Evaluation of 10-minute post-injection 11C-PiB PET and its correlation with 18F-FDG PET in older adults who are cognitively healthy, mildly impaired, or with probable Alzheimer's disease

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ASSOC BRASILEIRA PSIQUIATRIA
Citação
BRAZILIAN JOURNAL OF PSYCHIATRY, v.44, n.5, p.495-506, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: Positron emission tomography (PET) allows in vivo evaluation of molecular targets in neurodegenerative diseases, such as Alzheimer's disease. Mild cognitive impairment is an intermediate stage between normal cognition and Alzheimer-type dementia. In vivo fibrillar amyloid-beta can be detected in PET using [11C]-labeled Pittsburgh compound B (11C-PiB). In contrast, [18F] fluoro-2-deoxy-d-glucose (18F-FDG) is a neurodegeneration biomarker used to evaluate cerebral glucose metabolism, indicating neuronal injury and synaptic dysfunction. In addition, early cerebral uptake of amyloid-PET tracers can determine regional cerebral blood flow. The present study compared early-phase 11C-PiB and 18F-FDG in older adults without cognitive impairment, amnestic mild cognitive impairment, and clinical diagnosis of probable Alzheimer's disease.Methods: We selected 90 older adults, clinically classified as healthy controls, with amnestic mild cognitive impairment, or with probable Alzheimer's disease, who underwent an 18F-FDG PET, early -phase 11C-PiB PET and magnetic resonance imaging. All participants were also classified as amyloid-positive or-negative in late-phase 11C-PiB. The data were analyzed using statistical parametric mapping.Results: We found that the probable Alzheimer's disease and amnestic mild cognitive impairment group had lower early-phase 11C-PiB uptake in limbic structures than 18F-FDG uptake. The images showed significant interactions between amyloid-beta status (negative or positive). However, early -phase 11C-PiB appears to provide different information from 18F-FDG about neurodegeneration.Conclusions: Our study suggests that early-phase 11C-PiB uptake correlates with 18F-FDG, irrespective of the particular amyloid-beta status. In addition, we observed distinct regional distribution patterns between both biomarkers, reinforcing the need for more robust studies to investigate the real clinical value of early-phase amyloid-PET imaging.
Palavras-chave
Positron emission tomography, amyloid, [11C]-labeled Pittsburgh compound B, perfusion, cerebral glucose metabolism, [18F]fluoro-2-deoxy-d-glucose, aging, neuroimaging
Referências
  1. Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
  2. Bangen KJ, 2017, FRONT AGING NEUROSCI, V9, DOI 10.3389/fnagi.2017.00181
  3. Bilgel M, 2020, J CEREBR BLOOD F MET, V40, P288, DOI 10.1177/0271678X19830537
  4. BLESSED G, 1968, BRIT J PSYCHIAT, V114, P797, DOI 10.1192/bjp.114.512.797
  5. Blomquist Gunnar, 2008, Open Neuroimag J, V2, P114, DOI 10.2174/1874440000802010114
  6. Brucki SMD, 2003, ARQ NEURO-PSIQUIAT, V61, P777, DOI 10.1590/S0004-282X2003000500014
  7. Busatto G, 2021, J NEUROSCI RES, V99, P481, DOI 10.1002/jnr.24739
  8. Busatto GF, 2020, ALZH DEMENT-DADM, V12, DOI 10.1002/dad2.12122
  9. Ceccarini J, 2020, EUR J NUCL MED MOL I, V47, P2142, DOI 10.1007/s00259-020-04694-1
  10. Cohen AD, 2014, NEUROBIOL DIS, V72, P117, DOI 10.1016/j.nbd.2014.05.001
  11. Coutinho AMN, 2015, ALZHEIMERS RES THER, V7, DOI 10.1186/s13195-015-0143-0
  12. Coutinho AM, 2020, EUR J NUCL MED MOL I, V47, P2715, DOI 10.1007/s00259-020-04933-5
  13. Coutinho AM, 2020, EUR J NUCL MED MOL I, V47, P2666, DOI 10.1007/s00259-020-04714-0
  14. Csukly G, 2016, FRONT AGING NEUROSCI, V8, DOI 10.3389/fnagi.2016.00052
  15. Daerr S, 2017, NEUROIMAGE-CLIN, V14, P77, DOI 10.1016/j.nicl.2016.10.005
  16. DISCHINO DD, 1983, J NUCL MED, V24, P1030
  17. Drzezga A, 2008, NEUROIMAGE, V39, P619, DOI 10.1016/j.neuroimage.2007.09.020
  18. Edison P, 2007, NEUROLOGY, V68, P501, DOI 10.1212/01.wnl.0000244749.20056.d4
  19. Faria DD, 2019, BRAZ J PSYCHIAT, V41, P101, DOI 10.1590/1516-4446-2017-0002
  20. Fjell AM, 2014, PROG NEUROBIOL, V117, P20, DOI 10.1016/j.pneurobio.2014.02.004
  21. Fodero-Tavoletti MT, 2009, J NUCL MED, V50, P198, DOI 10.2967/jnumed.108.057984
  22. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  23. Forsberg A, 2012, BBA-MOL BASIS DIS, V1822, P380, DOI 10.1016/j.bbadis.2011.11.006
  24. Fu LP, 2018, CONTRAST MEDIA MOL I, DOI 10.1155/2018/6830105
  25. Fu LP, 2014, EUR RADIOL, V24, P2800, DOI 10.1007/s00330-014-3311-x
  26. Greicius MD, 2004, P NATL ACAD SCI USA, V101, P4637, DOI 10.1073/pnas.0308627101
  27. Harris PA, 2009, J BIOMED INFORM, V42, P377, DOI 10.1016/j.jbi.2008.08.010
  28. Herculano-Houzel S, 2014, GLIA, V62, P1377, DOI 10.1002/glia.22683
  29. Herholz K, 2011, INT PSYCHOGERIATR, V23, pS25, DOI 10.1017/S1041610211000937
  30. Huang CW, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-19387-x
  31. Jack CR, 2019, JAMA NEUROL, V76, P1174, DOI 10.1001/jamaneurol.2019.1971
  32. Johnson KA, 2007, J NEUROL NEUROSUR PS, V78, P240, DOI 10.1136/jnnp.2006.096800
  33. Joseph-Mathurin Nelly, 2018, Alzheimers Dement (Amst), V10, P669, DOI 10.1016/j.dadm.2018.08.012
  34. Kaduszkiewicz H, 2014, ANN FAM MED, V12, P158, DOI 10.1370/afm.1596
  35. Kato T, 2016, AGEING RES REV, V30, P73, DOI 10.1016/j.arr.2016.02.003
  36. Kisler K, 2017, NAT REV NEUROSCI, V18, P419, DOI 10.1038/nrn.2017.48
  37. Klunk WE, 2004, ANN NEUROL, V55, P306, DOI 10.1002/ana.20009
  38. Klunk WE, 2015, ALZHEIMERS DEMENT, V11, P1, DOI 10.1016/j.jalz.2014.07.003
  39. Laitinen L, 1989, CLIN NEUROL NEUROSUR, V91, P277
  40. Leech R, 2014, BRAIN, V137, P12, DOI 10.1093/brain/awt162
  41. Lowe VJ, 2018, J NUCL MED, V59, P1583, DOI 10.2967/jnumed.117.204271
  42. Mattsson N, 2014, BRAIN, V137, P1550, DOI 10.1093/brain/awu043
  43. McKhann GM, 2011, ALZHEIMERS DEMENT, V7, P263, DOI 10.1016/j.jalz.2011.03.005
  44. Meyer PT, 2011, J NUCL MED, V52, P393, DOI 10.2967/jnumed.110.083683
  45. Minoshima S, 1997, ANN NEUROL, V42, P85, DOI 10.1002/ana.410420114
  46. Mosconi L, 2008, J NUCL MED, V49, P390, DOI 10.2967/jnumed.107.045385
  47. Nelson PT, 2012, J NEUROPATH EXP NEUR, V71, P362, DOI 10.1097/NEN.0b013e31825018f7
  48. Nihashi Takashi, 2007, Radiat Med, V25, P255, DOI 10.1007/s11604-007-0132-8
  49. Oliveira FPM, 2018, J ALZHEIMERS DIS, V65, P89, DOI 10.3233/JAD-180274
  50. Peretti DE, 2019, EJNMMI RES, V9, DOI 10.1186/s13550-019-0528-3
  51. Peretti DE, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0214187
  52. Peretti DE, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0211000
  53. Petersen RC, 2001, ARCH NEUROL-CHICAGO, V58, P1985, DOI 10.1001/archneur.58.12.1985
  54. Petersen RC, 1999, ARCH NEUROL-CHICAGO, V56, P303, DOI 10.1001/archneur.56.3.303
  55. Ponto LLB, 2019, J NEUROIMAGING, V29, P85, DOI 10.1111/jon.12582
  56. Price JC, 2005, J CEREBR BLOOD F MET, V25, P1528, DOI 10.1038/sj.jcbfm.9600146
  57. Querfurth HW, 2010, NEW ENGL J MED, V362, P329, DOI 10.1056/NEJMra0909142
  58. Rodell A, 2013, FRONT AGING NEUROSCI, V5, DOI 10.3389/fnagi.2013.00045
  59. Rodriguez-Vieitez E, 2016, J NUCL MED, V57, P1071, DOI 10.2967/jnumed.115.168732
  60. Rostomian AH, 2011, J NUCL MED, V52, P173, DOI 10.2967/jnumed.110.082057
  61. Silverman DHS, 2004, J NUCL MED, V45, P594
  62. Smith SM, 2002, NEUROIMAGE, V17, P479, DOI 10.1006/nimg.2002.1040
  63. Smith SM, 2001, J COMPUT ASSIST TOMO, V25, P466, DOI 10.1097/00004728-200105000-00022
  64. Sojkova J, 2011, ARCH NEUROL-CHICAGO, V68, P232, DOI 10.1001/archneurol.2010.357
  65. Tiepolt S, 2016, EUR J NUCL MED MOL I, V43, P1700, DOI 10.1007/s00259-016-3353-1
  66. Tripathi M, 2013, INDIAN J NUCL MED, V28, P129, DOI 10.4103/0972-3919.119538
  67. Veronese M, 2015, J CEREBR BLOOD F MET, V35, P1771, DOI 10.1038/jcbfm.2015.120
  68. Zeydan B, 2019, ANN CLIN TRANSL NEUR, V6, P678, DOI 10.1002/acn3.741
  69. Zimmer ER, 2017, NAT NEUROSCI, V20, P393, DOI 10.1038/nn.4492