Early glycemic control and incretin improvement after gastric bypass: the role of oral and gastrostomy route

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
Citação
SURGERY FOR OBESITY AND RELATED DISEASES, v.15, n.4, p.595-601, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Patients with obesity have a suppressed incretin effect and a consequent imbalance of glycemic homeostasis. Several studies have shown improved type 2 diabetes after Roux-en-Y gastric bypass (RYGB). The mechanisms of early action are linked to caloric restriction, improvement of insulin resistance, pancreatic beta cell function, and the incretin effect of glycogen-like protein 1 and gastric inhibitory polypeptide, but reported data are conflicting. Objective: The objective of this study was to evaluate glycemic metabolism, including the oral glucose tolerance test and enterohormonal profile in the early postoperative period in severely obese patients who underwent RYGB with gastrostomy, comparing the preoperative supply of a standard bolus of nutrient against the postoperative administration through an oral and a gastrostomy route. Setting: Clinics Hospital of University of Sao Paulo, Brazil. Methods: Eleven patients with obesity and diabetes underwent RYGB with a gastrostomy performed in the excluded gastric remnant. Patients were given preoperative assessments of glycemic and enterohormone profiles and an oral glucose tolerance test; these were compared with early postoperative assessments after oral and gastrostomy route administrations. Results: The mean preoperative body mass index of the group was 44.1 +/- 6.6 kg/m(2), mean fasting blood glucose of 194.5 +/- 62.4 mg/dL, and glycated hemoglobin 8.7 +/- 1.6%. In 77.7% of the patients, there was normalization of the glycemic curve in the early postoperative period as evaluated by the oral glucose tolerance test. Significant decreases in glycemia, insulinemia, and homeostatic model assessment-insulin resistance were also observed, regardless of the route of administration. There was significant increase in glycogen-like protein 1 by the postoperative oral route and reduction of gastric inhibitory polypeptide in both routes. Ghrelin did not change. Conclusion: Glycemia and peripheral insulin resistance reductions were observed in early postoperative RYGB, independent of the oral or gastrostomy route. Incretin improvement, mediated by glycogen-like protein 1 increased was observed only in the postoperative oral route, while GIP reduced for both routes.
Palavras-chave
Gastric bypass, Diabetes, Diabetes remission, Intestinal hormones, Incretins
Referências
  1. Bojsen-Moller KN, 2014, DIABETES, V63, P1725, DOI 10.2337/db13-1307
  2. Chen HS, 2008, DIABETES CARE, V31, P1927, DOI 10.2337/dc08-0075
  3. Cummings DE, 2002, NEW ENGL J MED, V346, P1623, DOI 10.1056/NEJMoa012908
  4. Dirksen C, 2012, DIABETOLOGIA, V55, P1890, DOI 10.1007/s00125-012-2556-7
  5. Dirksen C, 2010, DIABETES CARE, V33, P375, DOI 10.2337/dc09-1374
  6. Dunn JP, 2012, DIABETES CARE, V35, P137, DOI 10.2337/dc11-1383
  7. Gleason CE, 2000, AM J PHYSIOL-ENDOC M, V279, pE997
  8. Hansen EN, 2011, AM J PHYSIOL-GASTR L, V300, pG795, DOI 10.1152/ajpgi.00019.2011
  9. Isbell JM, 2010, DIABETES CARE, V33, P1438, DOI 10.2337/dc09-2107
  10. Jorgensen NB, 2012, AM J PHYSIOL-ENDOC M, V303, pE122, DOI 10.1152/ajpendo.00073.2012
  11. Kashyap SR, 2010, INT J OBESITY, V34, P462, DOI 10.1038/ijo.2009.254
  12. Laferrere B, 2009, DIABETES METAB, V35, P513, DOI 10.1016/S1262-3636(09)73458-5
  13. Laferrere B, 2008, J CLIN ENDOCR METAB, V93, P2479, DOI 10.1210/jc.2007-2851
  14. Lindqvist A, 2013, J CLIN ENDOCR METAB, V98, pE856, DOI 10.1210/jc.2012-3996
  15. Lund A, 2011, AM J PHYSIOL-ENDOC M, V300, pE1038, DOI 10.1152/ajpendo.00665.2010
  16. Martinussen C, 2015, AM J PHYSIOL-ENDOC M, V308, pE535, DOI 10.1152/ajpendo.00506.2014
  17. Meier JJ, 2004, DIABETES, V53, pS220, DOI 10.2337/diabetes.53.suppl_3.S220
  18. Mithieux G, 2004, AM J PHYSIOL-ENDOC M, V286, pE370, DOI 10.1152/ajpendo.00299.2003
  19. Mithieux G, 2005, CELL METAB, V2, P321, DOI 10.1016/j.cmet.2005.09.010
  20. Mithieux G, 2009, CURR OPIN CLIN NUTR, V12, P419, DOI 10.1097/MCO.0b013e32832c4d6a
  21. Nauck MA, 2016, LANCET DIABETES ENDO, V4, P525, DOI 10.1016/S2213-8587(15)00482-9
  22. Pournaras DJ, 2016, SURG OBES RELAT DIS, V12, P1457, DOI 10.1016/j.soard.2016.03.020
  23. Pournaras DJ, 2012, SURG OBES RELAT DIS, V8, P371, DOI 10.1016/j.soard.2012.01.021
  24. Pournaras DJ, 2010, ANN SURG, V252, P966, DOI 10.1097/SLA.0b013e3181efc49a
  25. Rubino F, 2004, ANN SURG, V240, P236, DOI 10.1097/01.sla.0000133117.12646.48
  26. Rubino F, 2006, ANN SURG, V244, P741, DOI 10.1097/01.sla.0000224726.61448.1b
  27. Ryan EA, 2004, DIABETES CARE, V27, P1028, DOI 10.2337/diacare.27.5.1028
  28. Schauer PR, 2012, NEW ENGL J MED, V366, P1567, DOI 10.1056/NEJMoa1200225
  29. Troy S, 2008, CELL METAB, V8, P201, DOI 10.1016/j.cmet.2008.08.008
  30. Vilsboll T, 2003, REGUL PEPTIDES, V114, P115, DOI 10.1016/S0167-0115(03)00111-3
  31. Whitson BA, 2007, J SURG RES, V141, P31, DOI 10.1016/j.jss.2007.02.022