p53 and metabolism: From mechanism to therapeutics

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorSIMABUCO, F. M.
dc.contributor.authorMORALE, M. G.
dc.contributor.authorPAVAN, I. C. B.
dc.contributor.authorMORELLI, A. P.
dc.contributor.authorSILVA, F. R.
dc.contributor.authorTAMURA, R. E.
dc.date.accessioned2019-03-13T17:12:37Z
dc.date.available2019-03-13T17:12:37Z
dc.date.issued2018
dc.description.abstractThe tumor cell changes itself and its microenvironment to adapt to different situations, including action of drugs and other agents targeting tumor control. Therefore, metabolism plays an important role in the activation of survival mechanisms to keep the cell proliferative potential. The Warburg effect directs the cellular metabolism towards an aerobic glycolytic pathway, despite the fact that it generates less adenosine triphosphate than oxidative phosphorylation; because it creates the building blocks necessary for cell proliferation. The transcription factor p53 is the master tumor suppressor; it binds to more than 4,000 sites in the genome and regulates the expression of more than 500 genes. Among these genes are important regulators of metabolism, affecting glucose, lipids and amino acids metabolism, oxidative phosphorylation, reactive oxygen species (ROS) generation and growth factors signaling. Wild-type and mutant p53 may have opposing effects in the expression of these metabolic genes. Therefore, depending on the p53 status of the cell, drugs that target metabolism may have different outcomes and metabolism may modulate drug resistance. Conversely, induction of p53 expression may regulate differently the tumor cell metabolism, inducing senescence, autophagy and apoptosis, which are dependent on the regulation of the PI3K/AKT/mTOR pathway and/or ROS induction. The interplay between p53 and metabolism is essential in the decision of cell fate and for cancer therapeutics. © Simabuco et al.eng
dc.description.indexPubMedeng
dc.identifier.citationONCOTARGET, v.9, n.34, p.23780-23823, 2018
dc.identifier.doi10.18632/oncotarget.25267
dc.identifier.issn1949-2553
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/31056
dc.language.isoeng
dc.publisherIMPACT JOURNALS LLCeng
dc.relation.ispartofOncotarget
dc.rightsopenAccesseng
dc.rights.holderCopyright IMPACT JOURNALS LLCeng
dc.subjectChemotherapyeng
dc.subjectDrug resistanceeng
dc.subjectMetabolismeng
dc.subjectMutant p53eng
dc.subjectP53eng
dc.subject.otherantineoplastic agenteng
dc.subject.othercerulenineng
dc.subject.othergrowth factoreng
dc.subject.othermammalian target of rapamycineng
dc.subject.otheroxythiamineeng
dc.subject.otherphosphatidylinositol 3 kinaseeng
dc.subject.otherprotein kinase beng
dc.subject.otherprotein mdm2eng
dc.subject.otherprotein p53eng
dc.subject.otherreactive oxygen metaboliteeng
dc.subject.otherresveratroleng
dc.subject.otherritonavireng
dc.subject.othertetrahydrolipstatineng
dc.subject.othertln 232eng
dc.subject.otherunclassified drugeng
dc.subject.otheraerobic glycolysiseng
dc.subject.otheramino acid metabolismeng
dc.subject.otherapoptosiseng
dc.subject.otherautophagyeng
dc.subject.othercell fateeng
dc.subject.othercell growtheng
dc.subject.othercell metabolismeng
dc.subject.othercitric acid cycleeng
dc.subject.otherdrug targetingeng
dc.subject.otherenzyme regulationeng
dc.subject.othergene expression regulationeng
dc.subject.otherglucose metabolismeng
dc.subject.otherhumaneng
dc.subject.otherintracellular signalingeng
dc.subject.otherionizing radiationeng
dc.subject.otherkidney metastasiseng
dc.subject.otherlipid metabolismeng
dc.subject.otherliver cancereng
dc.subject.othermalignant neoplasmeng
dc.subject.othermelanomaeng
dc.subject.othermetabolic regulationeng
dc.subject.othermetabolismeng
dc.subject.othermyelomaeng
dc.subject.otherosteosarcomaeng
dc.subject.otheroxidative phosphorylationeng
dc.subject.otherprotein dna bindingeng
dc.subject.otherprotein functioneng
dc.subject.otherprotein metabolismeng
dc.subject.otherprotein phosphorylationeng
dc.subject.otherrevieweng
dc.subject.othersenescenceeng
dc.subject.otherthyroid cancereng
dc.subject.othertranscription regulationeng
dc.subject.othertumor microenvironmenteng
dc.titlep53 and metabolism: From mechanism to therapeuticseng
dc.typearticleeng
dc.type.categoryrevieweng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.author.externalSIMABUCO, F. M.:Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
hcfmusp.author.externalPAVAN, I. C. B.:Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
hcfmusp.author.externalMORELLI, A. P.:Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
hcfmusp.author.externalSILVA, F. R.:Laboratory of Functional Properties in Foods, School of Applied Sciences (FCA), Universidade de Campinas (UNICAMP), Limeira, São Paulo, Brazil
hcfmusp.citation.scopus99
hcfmusp.contributor.author-fmusphcMIRIAN GALLIOTE MORALE
hcfmusp.contributor.author-fmusphcRODRIGO ESAKI TAMURA
hcfmusp.description.beginpage23780
hcfmusp.description.endpage23823
hcfmusp.description.issue34
hcfmusp.description.volume9
hcfmusp.origemSCOPUS
hcfmusp.origem.pubmed29805774
hcfmusp.origem.scopus2-s2.0-85046706242
hcfmusp.relation.referenceHanahan, D., Weinberg, R.A., The hallmarks of cancer (2000) Cell, 100, pp. 57-70. , https://doi.org/10.1016/S0092-8674(00)81683-9eng
hcfmusp.relation.referenceHanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674. , https://doi.org/10.1016/j.cell.2011.02.013eng
hcfmusp.relation.referenceWarburg, O., Wind, F., Negelein, E., The metabolism of tumors in the body (1927) J Gen Physiol, 8, pp. 519-530. , https://doi.org/10.1085/jgp.8.6.519.PMID:19872213eng
hcfmusp.relation.referenceCantor, J.R., Sabatini, D.M., Cancer cell metabolism: one hallmark, many faces (2012) Cancer Discov, 2, pp. 881-898. , https://doi.org/10.1158/2159-8290.CD-12-0345eng
hcfmusp.relation.referenceJadvar, H., Alavi, A., Gambhir, S.S., 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization (2009) J Nucl Med, 50, pp. 1820-1827. , https://doi.org/10.2967/jnumed.108.054098eng
hcfmusp.relation.referenceDeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., Thompson, C.B., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation (2008) Cell Metab, 7, pp. 11-20. , https://doi.org/10.1016/j.cmet.2007.10.002eng
hcfmusp.relation.referenceVander Heiden, M.G., Cantley, L.C., Thompson, C.B., Understanding the Warburg effect: the metabolic requirements of cell proliferation (2009) Science, 324, pp. 1029-1033. , https://doi.org/10.1126/science.1160809eng
hcfmusp.relation.referenceLu, H., Forbes, R.A., Verma, A., Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis (2002) J Biol Chem, 277, pp. 23111-23115. , https://doi.org/10.1074/jbc.M202487200eng
hcfmusp.relation.referenceEstrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H.H., Ibrahim-Hashim, A., Bailey, K., Gillies, R.J., Acidity generated by the tumor microenvironment drives local invasion (2013) Cancer Res, 73, pp. 1524-1535. , https://doi.org/10.1158/0008-5472.CAN-12-2796eng
hcfmusp.relation.referenceCalcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A., Generoso, L., Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes (2012) Cancer Res, 72, pp. 2746-2756. , https://doi.org/10.1158/0008-5472.CAN-11-1272eng
hcfmusp.relation.referenceBrand, K.A., Hermfisse, U., Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species (1997) FASEB J, 11, pp. 388-395eng
hcfmusp.relation.referenceRuckenstuhl, C., Büttner, S., Carmona-Gutierrez, D., Eisenberg, T., Kroemer, G., Sigrist, S.J., Fröhlich, K.U., Madeo, F., The Warburg effect suppresses oxidative stress induced apoptosis in a yeast model for cancer (2009) PLoS One, 4. , https://doi.org/10.1371/journal.pone.0004592eng
hcfmusp.relation.referenceNewsholme, E.A., Crabtree, B., Ardawi, M.S., The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells (1985) Biosci Rep, 5, pp. 393-400. , https://doi.org/10.1007/BF01116556eng
hcfmusp.relation.referenceReitzer, L.J., Wice, B.M., Kennell, D., Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells (1979) J Biol Chem, 254, pp. 2669-2676eng
hcfmusp.relation.referenceDeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., Thompson, C.B., Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis (2007) Proc Natl Acad Sci USA, 104, pp. 19345-19350. , https://doi.org/10.1073/pnas.0709747104eng
hcfmusp.relation.referenceVaughn, A.E., Deshmukh, M., Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c (2008) Nat Cell Biol, 10, pp. 1477-1483. , https://doi.org/10.1038/ncb1807eng
hcfmusp.relation.referenceAnastasiou, D., Cantley, L.C., Breathless cancer cells get fat on glutamine (2012) Cell Res, 22, pp. 443-446. , https://doi.org/10.1038/cr.2012.5eng
hcfmusp.relation.referenceMazurek, S., Boschek, C.B., Hugo, F., Eigenbrodt, E., Pyruvate kinase type M2 and its role in tumor growth and spreading (2005) Semin Cancer Biol, 15, pp. 300-308. , https://doi.org/10.1016/j.semcancer.2005.04.009eng
hcfmusp.relation.referenceZwerschke, W., Mazurek, S., Massimi, P., Banks, L., Eigenbrodt, E., Jansen-Dürr, P., Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein (1999) Proc Natl Acad Sci USA, 96, pp. 1291-1296. , https://doi.org/10.1073/pnas.96.4.1291eng
hcfmusp.relation.referenceChristofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M., Cantley, L.C., Pyruvate kinase M2 is a phosphotyrosinebinding protein (2008) Nature, 452, pp. 181-186. , https://doi.org/10.1038/nature06667eng
hcfmusp.relation.referenceCairns, R.A., Harris, I.S., Mak, T.W., Regulation of cancer cell metabolism (2011) Nat Rev Cancer, 11, pp. 85-95. , https://doi.org/10.1038/nrc2981eng
hcfmusp.relation.referenceYe, J., Mancuso, A., Tong, X., Ward, P.S., Fan, J., Rabinowitz, J.D., Thompson, C.B., Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation (2012) Proc Natl Acad Sci USA, 109, pp. 6904-6909. , https://doi.org/10.1073/pnas.1204176109eng
hcfmusp.relation.referenceMaddocks, O.D., Berkers, C.R., Mason, S.M., Zheng, L., Blyth, K., Gottlieb, E., Vousden, K.H., Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells (2013) Nature, 493, pp. 542-546. , https://doi.org/10.1038/nature11743eng
hcfmusp.relation.referenceLabuschagne, C.F., van den Broek, N.J., Mackay, G.M., Vousden, K.H., Maddocks, O.D., Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells (2014) Cell Reports, 7, pp. 1248-1258. , https://doi.org/10.1016/j.celrep.2014.04.045eng
hcfmusp.relation.referenceLocasale, J.W., Grassian, A.R., Melman, T., Lyssiotis, C.A., Mattaini, K.R., Bass, A.J., Heffron, G., Mullarky, E., Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis (2011) Nat Genet, 43, pp. 869-874. , https://doi.org/10.1038/ng.890eng
hcfmusp.relation.referencePossemato, R., Marks, K.M., Shaul, Y.D., Pacold, M.E., Kim, D., Birsoy, K., Sethumadhavan, S., Stransky, N., Functional genomics reveal that the serine synthesis pathway is essential in breast cancer (2011) Nature, 476, pp. 346-350. , https://doi.org/10.1038/nature10350eng
hcfmusp.relation.referenceAmelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., Melino, G., Serine and glycine metabolism in cancer (2014) Trends Biochem Sci, 39, pp. 191-198. , https://doi.org/10.1016/j.tibs.2014.02.004eng
hcfmusp.relation.referenceNilsson, R., Jain, M., Madhusudhan, N., Sheppard, N.G., Strittmatter, L., Kampf, C., Huang, J., Mootha, V.K., Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer (2014) Nat Commun, 5, p. 3128. , https://doi.org/10.1038/ncomms4128eng
hcfmusp.relation.referenceLiu, Y., Borchert, G.L., Donald, S.P., Diwan, B.A., Anver, M., Phang, J.M., Proline oxidase functions as a mitochondrial tumor suppressor in human cancers (2009) Cancer Res, 69, pp. 6414-6422. , https://doi.org/10.1158/0008-5472.CAN-09-1223eng
hcfmusp.relation.referenceKress, M., May, E., Cassingena, R., May, P., Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum (1979) J Virol, 31, pp. 472-483eng
hcfmusp.relation.referenceLane, D.P., Crawford, L.V., T antigen is bound to a host protein in SV40-transformed cells (1979) Nature, 278, pp. 261-263. , https://doi.org/10.1038/278261a0eng
hcfmusp.relation.referenceLinzer, D.I., Levine, A.J., Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells (1979) Cell, 17, pp. 43-52. , https://doi.org/10.1016/0092-8674(79)90293-9eng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublication71b5990a-ed51-4b6c-b444-b017d5e8f507
relation.isAuthorOfPublication11ad6774-08c9-4ff9-a149-00f9a5f44fdc
relation.isAuthorOfPublication.latestForDiscovery71b5990a-ed51-4b6c-b444-b017d5e8f507
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_SIMABUCO_p53_and_metabolism_From_mechanism_to_therapeutics_2018.PDF
Tamanho:
3.64 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)