Iron-based phosphorus chelator: Risk of iron deposition and action on bone metabolism in uremic rats

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Autores
CARMO, Wander Barros do
CASTRO, Barbara Bruna Abreu
MANSO, Luisa Cardoso
CARMO, Priscylla Aparecida Vieira do
RODRIGUES, Clovis Antonio
SANDERS-PINHEIRO, Helady
Citação
EXPERIMENTAL BIOLOGY AND MEDICINE, v.247, n.5, p.446-452, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Phosphate chelators are frequently used in patients with chronic kidney disease (CKD). New iron-based chelators remain understudied and offer a promising therapeutic option for the control of bone and mineral disorders of chronic kidney disease (BMD-CKD). We assessed the effect of the phosphorus chelator, chitosan-iron III (CH-FeCl), compared to calcium carbonate (CaCO3) in BMD-CKD and the potential iron overload in uremic rats. Thirty-two animals were divided into four groups, namely the control, CKD, CKD/CH-FeCl, and CKD/CaCO3 groups. CKD was induced by adding 0.75% (4 weeks) and 0.1% (3 weeks) adenine to the diet. The chelators were administered from week 3 through week 7. The renal function, BMD-CKD markers, and histomorphometry of the femur were assessed at week 7. The CKD group showed a significant increase in creatinine (83.9 +/- 18.6 vs. 41.5 +/- 22.1 mu mol/L; P = 0.001), phosphate (3.5 +/- 0.8 vs. 2.2 +/- 0.2 mmol/L; P = 0.001), fractional excretion of phosphorus (FEP) (0.71 +/- 0.2 vs. 0.2 +/- 0.17; P = 0.0001), and FGF23 (81.36 +/- 37.16 pg/mL vs. 7.42 +/- 1.96; P = 0.011) compared to the control group. There was no accumulation of serum or bone iron after the use of CH-FeCl. The use of chelators reduced the FEP (control: 0.71 +/- 0.20; CKD/CH-FeCl: 0.40 +/- 0.16; CKD/CaCO3 0.34 +/- 0.15; P = 0.001), without changes in the serum FGF23 and parathyroid hormone levels. Histomorphometry revealed the presence of bone disease with high remodeling in the uremic animals without changes with the use of chelators. The CH-FeCl chelator was efficient in reducing the FEP without iron accumulation, thereby paving the way for the use of this class of chelators in clinical settings in the future.
Palavras-chave
Hyperphosphatemia, chitosan, renal insufficiency, chronic, fibroblast growth factor 23, chronic kidney disease-mineral and bone disorder, iron overload
Referências
  1. de Castro BBA, 2018, EXP BIOL MED, V243, P796, DOI 10.1177/1535370218775035
  2. Ahmadi N, 2018, OSTEOPOROSIS INT, V29, P1609, DOI 10.1007/s00198-018-4524-7
  3. Anraku M, 2014, CARBOHYD POLYM, V112, P152, DOI 10.1016/j.carbpol.2014.05.078
  4. Anraku M, 2012, CARBOHYD POLYM, V89, P302, DOI 10.1016/j.carbpol.2012.03.014
  5. Asami M, 2018, INT HEART J, V59, P489, DOI 10.1536/ihj.17-351
  6. Aslam N, 2020, CLIN NEPHROL, V93, P262, DOI 10.5414/CN109738
  7. Barreto FC, 2019, KIDNEY INT REP, V4, P1043, DOI 10.1016/j.ekir.2019.06.002
  8. Barreto Fellype Carvalho, 2014, Braz. J. Nephrol., V36, P289, DOI 10.5935/0101-2800.20140042
  9. Baxter J, 2000, J PHARM PHARMACOL, V52, P863, DOI 10.1211/0022357001774552
  10. BIJVOET OLM, 1969, CLIN SCI, V37, P23
  11. Burger C, 2001, INT J PHARMACEUT, V223, P29, DOI 10.1016/S0378-5173(01)00727-X
  12. Chen HM, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/9619253
  13. Cozzolino M, 2014, CURR DRUG METAB, V15, P953
  14. Craver L, 2007, NEPHROL DIAL TRANSPL, V22, P1171, DOI 10.1093/ndt/gfl718
  15. Custodio MR, 2018, INT UROL NEPHROL, V50, P1907, DOI 10.1007/s11255-018-1936-4
  16. Dempster DW, 2013, J BONE MINER RES, V28, P1, DOI 10.1002/jbmr.1805
  17. Diwan V, 2018, NEPHROLOGY, V23, P5, DOI 10.1111/nep.13180
  18. do Carmo WB, 2018, BASIC CLIN PHARMACOL, V122, P120, DOI 10.1111/bcpt.12849
  19. Elder GJ, 2017, NEPHROLOGY, V22, P42, DOI 10.1111/nep.13031
  20. Floege J, 2015, NEPHROL DIAL TRANSPL, V30, P1037, DOI 10.1093/ndt/gfv006
  21. Fujii H, 2018, TOXINS, V10, DOI 10.3390/toxins10050202
  22. Gal-Moscovici A, 2005, CLIN NEPHROL, V63, P284
  23. Geisser P, 2010, CLIN NEPHROL, V74, P4
  24. Gorriz JL, 2013, NEFROLOGIA, V33, P46, DOI 10.3265/Nefrologia.pre2012.Nov.11703
  25. Guo YC, 2015, INT J ORAL SCI, V7, P8, DOI 10.1038/ijos.2015.1
  26. Gutierrez OM, 2008, NEW ENGL J MED, V359, P584, DOI 10.1056/NEJMoa0706130
  27. Hamano H, 2018, NEPHROL DIAL TRANSPL, V33, P586, DOI 10.1093/ndt/gfx252
  28. Henaut L, 2018, TOXINS, V10, DOI 10.3390/toxins10060218
  29. Hou YC, 2018, NEPHROLOGY, V23, P88, DOI 10.1111/nep.13457
  30. Iguchi A, 2018, CLIN EXP NEPHROL, V22, P789, DOI 10.1007/s10157-017-1510-x
  31. Iguchi A, 2015, NEPHRON, V131, P161, DOI 10.1159/000440968
  32. Iida A, 2020, J VET MED SCI, V82, P379, DOI 10.1292/jvms.19-0641
  33. Iida A, 2013, AM J NEPHROL, V37, P346, DOI 10.1159/000348805
  34. Isakova T, 2018, J AM SOC NEPHROL, V29, P579, DOI 10.1681/ASN.2017070772
  35. Jing SB, 1997, J PHARM PHARMACOL, V49, P721, DOI 10.1111/j.2042-7158.1997.tb06099.x
  36. Ketteler M, 2019, NEPHROL DIAL TRANSPL, V34, P1163, DOI 10.1093/ndt/gfy127
  37. Ketteler M, 2017, KIDNEY INT, V92, P26, DOI 10.1016/j.kint.2017.04.006
  38. Kimura T, 2019, INT J HEMATOL, V109, P59, DOI 10.1007/s12185-018-2531-2
  39. Koiwa F, 2005, THER APHER DIAL, V9, P336, DOI 10.1111/j.1744-9987.2005.00293.x
  40. Koiwa F, 2017, CLIN EXP NEPHROL, V21, P513, DOI 10.1007/s10157-016-1299-z
  41. Koiwa F, 2017, NEPHROLOGY, V22, P293, DOI 10.1111/nep.12891
  42. Kraut J A, 1995, Adv Ren Replace Ther, V2, P40
  43. Lehmann G, 2008, CLIN NEPHROL, V70, P296
  44. Levin A, 2007, KIDNEY INT, V71, P31, DOI 10.1038/sj.ki.5002009
  45. Lewis JB, 2015, J AM SOC NEPHROL, V26, P493, DOI 10.1681/ASN.2014020212
  46. Liabeuf S, 2019, BONE, V129, DOI 10.1016/j.bone.2019.115058
  47. MALBERTI F, 1988, AM J KIDNEY DIS, V12, P487, DOI 10.1016/S0272-6386(88)80099-4
  48. Murali SK, 2016, J BONE MINER RES, V31, P129, DOI 10.1002/jbmr.2606
  49. Nastou D, 2014, DRUGS, V74, P863, DOI 10.1007/s40265-014-0224-6
  50. Naves-Diaz M, 2011, NEPHROL DIAL TRANSPL, V26, P1938, DOI 10.1093/ndt/gfq304
  51. Orriss IR, 2010, CURR OPIN PHARMACOL, V10, P322, DOI 10.1016/j.coph.2010.01.003
  52. Phan O, 2013, J PHARMACOL EXP THER, V346, P281, DOI 10.1124/jpet.113.204792
  53. Recker RR, 2011, BONE, V49, P955, DOI 10.1016/j.bone.2011.07.017
  54. Schoninger LMR, 2010, BASIC CLIN PHARMACOL, V106, P467, DOI 10.1111/j.1742-7843.2009.00527.x
  55. Sekercioglu N, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0171028
  56. Shima Hisato, 2018, BMC Res Notes, V11, P363, DOI 10.1186/s13104-018-3483-6
  57. Soriano S, 2013, CLIN NEPHROL, V80, P17, DOI 10.5414/CN107764
  58. Yaguchi A, 2019, BMC NEPHROL, V20, DOI 10.1186/s12882-019-1655-9
  59. Yaguchi A, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180430
  60. Yamamoto S, 2012, INTERNAL MED, V51, P2375, DOI 10.2169/internalmedicine.51.7450
  61. Yokoyama K, 2014, CLIN J AM SOC NEPHRO, V9, P543, DOI 10.2215/CJN.05170513