Aerobic exercise modulates cardiac NAD(P)H oxidase and the NRF2/KEAP1 pathway in a mouse model of chronic fructose consumption

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER PHYSIOLOGICAL SOC
Autores
ALVES, Renata
OLIVEIRA, Flavia Garcia de
FRANTZ, Eliete Dalla Corte
MEDEIROS, Renata Frauches de
NOBREGA, Antonio Claudio Lucas da
Citação
JOURNAL OF APPLIED PHYSIOLOGY, v.128, n.1, p.59-69, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The present study investigated the effects of exercise on the cardiac nuclear factor (erythroid-derived 2) factor 2 (NRF2)/Kelch-like ECU-associated protein 1 (KEAP1) pathway in an experimental model of chronic fructose consumption. Male C57BL/6 mice were assigned to Control, Fructose (20% fructose in drinking water), Exercise (treadmill exercise at moderate intensity), and Fructose + Exercise groups (n = 10). After 12 wk. the energy intake and body weight in the groups were similar. Maximum exercise testing, resting energy expenditure, resting oxygen consumption, and carbon dioxide production increased in the exercise groups (Exercise and Fructose + Exercise vs. Control and Fructose groups. P < 0.05). Chronic fructose intake induced circulating hypercholesterolemia, hypertriglyceridemia. and hyperleptinemia and increased white adipose tissue depots, with no changes in blood pressure. This metabolic environment increased circulating IL-6, IL-1 beta, IL-10, cardiac hypertrophy. and cardiac NF-kappa B-p65 and TNF-alpha expression, which were reduced by exercise (P < 0.05). Cardiac ANC. II type 1 receptor and NiD(P)H oxidase 2 (NOX2) were increased by fructose intake and exercise decreased this response (P < 0.05). Exercise increased the cardiac expression of the NRF2-to-KEAP1 ratio and phase II antioxidants in fructose-fed mice (P < 0.05). NOX4, glutathione reductase, and catalase protein expression were similar between the groups. These findings suggest that exercise confers modulatory cardiac effects, improving antioxidant defenses through the NRF2/KEAP1 pathway and decreasing oxidative stress, representing a potential nonpharmacological approach to protect against fructose-induced cardiometabolic diseases. NEW & NOTEWORTHY This is the first study to evaluate the cardiac modulation of NAD(P)H oxidase (NOX), the NRF2/Kelchlike ECH-associated protein 1 pathway (KEAP), and the thioredoxin TRX1) system through exercise in the presence of moderate fructose intake. We demonstrated a novel mechanism by which exercise improves cardiac antioxidant defenses in an experimental model of chronic fructose intake, which involves NRF2-to-KEAP1 ratio modulation, enhancing the local phase II antioxidants hemoxygenase-1, thioredoxin reductase (TXNRD1), and peroxiredoxin1B (PDRX1), and inhibiting cardiac NOX2 overexpression.
Palavras-chave
antioxidants, cardiometabolic disease, exercise, fructose
Referências
  1. BANTLE JP, 1992, DIABETES CARE, V15, P1468, DOI 10.2337/diacare.15.11.1468
  2. Baranano DE, 2002, P NATL ACAD SCI USA, V99, P16093, DOI 10.1073/pnas.252626999
  3. Bendall JK, 2002, CIRCULATION, V105, P293, DOI 10.1161/hc0302.103712
  4. Bernardes N, 2017, CAN J PHYSIOL PHARM, V95, P1078, DOI 10.1139/cjpp-2016-0663
  5. Bouchard-Thomassin AA, 2011, AM J PHYSIOL-HEART C, V300, pH125, DOI 10.1152/ajpheart.00199.2010
  6. BRADLEY RL, 2008, AM J PHYSIOL-ENDOC M, V295, pE58, DOI 10.1152/AJPENDO.00309.2007
  7. Brewer AC, 2011, FREE RADICAL BIO MED, V51, P205, DOI 10.1016/j.freeradbiomed.2011.04.022
  8. Brigelius-Flohe R, 1999, FREE RADICAL BIO MED, V27, P951, DOI 10.1016/S0891-5849(99)00173-2
  9. Brito JM, 1985, J APPL PHYSIOL, V117, P492, DOI [10.1152/japplphysiol.00156, DOI 10.1152/JAPPLPHYSIOL.00156]
  10. Byrne JA, 2003, CIRC RES, V93, P802, DOI 10.1161/01.RES.0000099504.30207.F5
  11. Cecchini M, 2010, LANCET, V376, P1775, DOI 10.1016/S0140-6736(10)61514-0
  12. Chartoumpekis DV, 2013, CURR DIABETES REV, V9, P137, DOI 10.2174/1573399811309020005
  13. Chen YH, 2002, HUM GENET, V111, P1, DOI 10.1007/s00439-002-0769-4
  14. Chobanian AV, 2003, JAMA-J AM MED ASSOC, V289, P2560, DOI 10.1001/jama.289.19.2560
  15. Churchman AT, 2009, J CELL MOL MED, V13, P2282, DOI 10.1111/j.1582-4934.2009.00874.x
  16. de Lemos ET, 2012, OXID MED CELL LONGEV, DOI 10.1155/2012/741545
  17. Dinkova-Kostova AT, 2002, P NATL ACAD SCI USA, V99, P11908, DOI 10.1073/pnas.172398899
  18. Doerries C, 2007, CIRC RES, V100, P894, DOI 10.1161/01.RES.0000261657.76299.ff
  19. Done AJ, 2016, REDOX BIOL, V10, P191, DOI 10.1016/j.redox.2016.10.003
  20. Ferrere G, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146177
  21. Fisher-Wellman KH, 2013, J PHYSIOL-LONDON, V591, P3471, DOI 10.1113/jphysiol.2013.254193
  22. Frantz ED, 2018, CLIN SCI, V132, P1487, DOI 10.1042/CS20180276
  23. Glushakova O, 2008, J AM SOC NEPHROL, V19, P1712, DOI 10.1681/ASN.2007121304
  24. Golbidi S, 2014, J DIABETES RES, DOI 10.1155/2014/726861
  25. Grosser N, 2004, FREE RADICAL BIO MED, V37, P2064, DOI 10.1016/j.freeradbiomed.2004.09.009
  26. Henriksen EJ, 2001, HYPERTENSION, V38, P884, DOI 10.1161/hy1101.092970
  27. Hu YY, 2017, FOOD FUNCT, V8, P2803, DOI 10.1039/c7fo00359e
  28. Huang PL, 2009, DIS MODEL MECH, V2, P231, DOI 10.1242/dmm.001180
  29. Huey KA, 2008, J NEUROIMMUNOL, V199, P56, DOI 10.1016/j.jneuroim.2008.05.004
  30. Itoh K, 1999, GENE DEV, V13, P76, DOI 10.1101/gad.13.1.76
  31. Johnson P, 2002, COMP BIOCHEM PHYS C, V133, P493, DOI 10.1016/S1532-0456(02)00120-5
  32. Jung O, 2004, CIRCULATION, V109, P1795, DOI 10.1161/01.CIR.0000124223.00113.A4
  33. Kanaley JA, 2001, INT J OBESITY, V25, P1474, DOI 10.1038/sj.ijo.0801797
  34. Kavazis AN, 2009, AM J PHYSIOL-HEART C, V297, pH144, DOI 10.1152/ajpheart.01278.2008
  35. Korczak Dieter, 2011, GMS Health Technol Assess, V7, pDoc02, DOI 10.3205/hta000093
  36. La Rovere MT, 2002, CIRCULATION, V106, P945, DOI 10.1161/01.CIR.0000027565.12764.E1
  37. Lassegue B, 2012, CIRC RES, V110, P1364, DOI 10.1161/CIRCRESAHA.111.243972
  38. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  39. Loffreda S, 1998, FASEB J, V12, P57
  40. Bargut TCL, 2015, J NUTR BIOCHEM, V26, P960, DOI 10.1016/j.jnutbio.2015.04.002
  41. Looi YH, 2008, HYPERTENSION, V51, P319, DOI 10.1161/HYPERTENSIONAHA.107.101980
  42. Lu J, 2014, FREE RADICAL BIO MED, V66, P75, DOI 10.1016/j.freeradbiomed.2013.07.036
  43. Magliano DC, 2015, ENDOCRINE, V50, P355, DOI 10.1007/s12020-015-0590-1
  44. Mandarim-De-Lacerda CA, 2003, AN ACAD BRAS CIENC, V75, P469, DOI 10.1590/S0001-37652003000400006
  45. Mandarim-de-Lacerda CA, 2010, METHODS MOL BIOL, V611, P211, DOI 10.1007/978-1-60327-345-9_17
  46. Mayer M, 2000, CLIN CHEM, V46, P1723
  47. Mbanya JC, 2011, LANCET, V377, P536, DOI 10.1016/S0140-6736(10)61891-0
  48. Medeiros RF, 2016, J APPL PHYSIOL, V121, P289, DOI 10.1152/japplphysiol.00369.2015
  49. Mells JE, 2012, AM J PHYSIOL-GASTR L, V302, pG225, DOI 10.1152/ajpgi.00274.2011
  50. Meng C, 2009, J PROTEOME RES, V8, P2463, DOI 10.1021/pr801059u
  51. Moghaddam DA, 2011, WIEN MED WOCHENSCHR, V161, P511, DOI 10.1007/s10354-011-0037-0
  52. Morvan E, 2013, CARDIOVASC DIABETOL, V12, DOI 10.1186/1475-2840-12-89
  53. Nguyen T, 2003, ANNU REV PHARMACOL, V43, P233, DOI 10.1146/annurev.pharmtox.43.100901.140229
  54. Nisimoto Y, 2014, BIOCHEMISTRY-US, V53, P5111, DOI 10.1021/bi500331y
  55. Novoa U, 2017, OXID MED CELL LONGEV, DOI 10.1155/2017/7921363
  56. Otterbein LE, 2003, NAT MED, V9, P183, DOI 10.1038/nm817
  57. POND CM, 1991, INT J OBESITY, V15, P609
  58. Putnam CD, 2000, J MOL BIOL, V296, P295, DOI 10.1006/jmbi.1999.3458
  59. Rajagopalan S, 1996, J CLIN INVEST, V97, P1916, DOI 10.1172/JCI118623
  60. Rhee SG, 2005, FREE RADICAL BIO MED, V38, P1543, DOI 10.1016/j.freeradbiomed.2005.02.026
  61. Richters L, 2011, J APPL PHYSIOL, V111, P1431, DOI 10.1152/japplphysiol.01392.2010
  62. Rodriguez E, 2004, OBES RES, V12, P1455, DOI 10.1038/oby.2004.182
  63. Sekhar KR, 2003, CANCER RES, V63, P5636
  64. Sethi JK, 2007, J LIPID RES, V48, P1253, DOI 10.1194/jlr.R700005-JLR200
  65. Sharma N, 2008, J HYPERTENS, V26, P1402, DOI 10.1097/HJH.0b013e3283007dda
  66. Sharma N, 2007, AM J HYPERTENS, V20, P403, DOI 10.1016/j.amjhyper.2006.09.022
  67. Stanhope KL, 2009, J CLIN INVEST, V119, P1322, DOI 10.1172/JCI37385
  68. Sun MW, 2008, HYPERTENS RES, V31, P805, DOI 10.1291/hypres.31.805
  69. Teff KL, 2004, J CLIN ENDOCR METAB, V89, P2963, DOI 10.1210/jc.2003-031855
  70. Toledo AC, 2012, EUR RESPIR J, V39, P254, DOI 10.1183/09031936.00003411
  71. Tsai SP, 2008, DIABETES RES CLIN PR, V82, P148, DOI 10.1016/j.diabres.2008.07.016
  72. Vazquez-Medina JP, 2013, AM J PHYSIOL-HEART C, V305, pH599, DOI 10.1152/ajpheart.00101.2013
  73. Vieira RP, 2007, AM J RESP CRIT CARE, V176, P871, DOI 10.1164/rccm.200610-1567OC
  74. Wang JY, 2014, FREE RADICAL BIO MED, V69, P278, DOI 10.1016/j.freeradbiomed.2014.01.027
  75. Yagishita Y, 2014, DIABETES, V63, P605, DOI 10.2337/db13-0909
  76. Yamagishi SI, 2001, J BIOL CHEM, V276, P25096, DOI 10.1074/jbc.M007383200
  77. Yang QH, 2014, JAMA INTERN MED, V174, P516, DOI 10.1001/jamainternmed.2013.13563
  78. Zachwieja JJ, 1997, DIABETES, V46, P1159, DOI 10.2337/diabetes.46.7.1159
  79. Zhang M, 2010, P NATL ACAD SCI USA, V107, P18121, DOI 10.1073/pnas.1009700107