The Role of Acetylcholine in the Inflammatory Response in Animals Surviving Sepsis Induced by Cecal Ligation and Puncture

Carregando...
Imagem de Miniatura
Citações na Scopus
31
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
HUMANA PRESS INC
Citação
MOLECULAR NEUROBIOLOGY, v.53, n.10, p.6635-6643, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The cholinergic anti-inflammatory pathway controls the inflammatory response and nonreflexive consciousness through bidirectional communication between the brain and immune system. Moreover, brain acetylcholinesterase activity may have a role in regulating the vagus nerve in this pathway. Thus, we analyzed the role of acetylcholine (ACh) in the inflammatory response 15 days after induction of sepsis by cecal ligation and puncture (CLP). Balb/c mice were pretreated with or without donepezil (5 mg/kg/day, orally) 7 days before CLP, and mice homozygous for vesicular ACh transporter (VAChT) knockdown (KD) were subjected to CLP. All animals were sacrificed 15 days after CLP, and the plasma, spleen, and hippocampus were collected. Characterization of splenic lymphocytes and cytokine levels in the plasma, spleen, and hippocampus was determined. Our results showed a splenomegaly in group CLP. The numbers of cytotoxic T cells, helper T cells, regulatory T cells, B cells, and Th17 cells differed between mice subjected to CLP and to sham operation in both untreated and donepezil-treated groups. In VAChT-KD mice, CLP resulted in decreased cytotoxic and helper T cells and increased in Th17 cells compared with the sham. Additionally, in VAChT-KD mice, the levels of pro-inflammatory cytokines, such as IL-1 beta, IL-6, and TNF-alpha, were increased following CLP. Thus, we concluded that ACh affected the inflammatory response at 15 days after CLP since stimulation of cholinergic transmission increased the proliferation of lymphocytes, including regulatory T cells, in association with a lower inflammatory profile and VAChT-KD decreased the number of lymphocytes and increased inflammation.
Palavras-chave
Sepsis, Cytokines, Lymphocytes, Ach, Donepezil, VAChT
Referências
  1. Abbas AK, 2011, IMUNOLOGIA CELULAR M
  2. Ayala A, 2003, INT J BIOCHEM CELL B, V35, P7, DOI 10.1016/S1357-2725(02)00099-7
  3. Ayala A, 1999, IMMUNE RESPONSE CRIT, P227, DOI [10.1007/978-3-642-57210-4_16, DOI 10.1007/978-3-642-57210-4_16]
  4. BALK RA, 1989, CRIT CARE CLIN, V5, P1
  5. Barbeiro DF, 2011, IMMUNOBIOLOGY, V216, P302, DOI 10.1016/j.imbio.2010.08.002
  6. Barbosa J, 2002, J NEUROCHEM, V82, P1221, DOI 10.1046/j.1471-4159.2002.01068.x
  7. Barbosa J, 1999, J NEUROCHEM, V73, P1881
  8. Borovikova LV, 2000, NATURE, V405, P458
  9. Francis PT, 1999, J NEUROL NEUROSUR PS, V66, P137, DOI 10.1136/jnnp.66.2.137
  10. Gallowitsch-Puerta M, 2007, LIFE SCI, V80, P2325, DOI 10.1016/j.lfs.2007.01.002
  11. GIACOBINI E, 1993, PROG BRAIN RES, V98, P447
  12. Gomez HG, 2014, CRIT CARE MED, V42, P771, DOI 10.1097/CCM.0000000000000100
  13. GOTOH M, 1989, BRAIN RES, V493, P97, DOI 10.1016/0006-8993(89)91003-2
  14. Hansen RA, 2008, CLIN INTERV AGING, V3, P211
  15. Hoesel LM, 2006, IMMUNOL RES, V34, P133, DOI 10.1385/IR:34:2:133
  16. Hofer S, 2008, CRIT CARE MED, V36, P404, DOI 10.1097/01.CCM.0B013E31816208B3
  17. Hotchkiss RS, 2013, NAT REV IMMUNOL, V13, P862, DOI 10.1038/nri3552
  18. Hotchkiss RS, 2003, NEW ENGL J MED, V348, P138, DOI 10.1056/NEJMra021333
  19. Huston JM, 2006, J EXP MED, V203, P1623, DOI 10.1084/jem.20052362
  20. Karima R, 1999, MOL MED TODAY, V5, P123, DOI 10.1016/S1357-4310(98)01430-0
  21. Kunze K, 2002, J NEUROL, V249, P1150, DOI 10.1007/s00415-002-0869-z
  22. Lima RD, 2010, J NEUROCHEM, V113, P943, DOI 10.1111/j.1471-4159.2010.06657.x
  23. Lorigados Clara Batista, 2010, Endocrine Metabolic & Immune Disorders-Drug Targets, V10, P274
  24. Mannick JA, 1993, HOST DEFENSE DYSFUNC, P15
  25. Melo ES, 2010, IMMUNOBIOLOGY, V215, P435, DOI 10.1016/j.imbio.2009.09.002
  26. Olofsson PS, 2012, IMMUNOL REV, V248, P188, DOI 10.1111/j.1600-065X.2012.01138.x
  27. Ono S, 2013, SURGERY, V153, P262, DOI 10.1016/j.surg.2012.06.023
  28. Osler W, 1908, BRIT MED J, V1908, P1470
  29. Pavlov VA, 2006, P NATL ACAD SCI USA, V103, P5219, DOI 10.1073/pnas.0600506103
  30. Pavlov VA, 2003, MOL MED, V9, P125
  31. Pavlov VA, 2007, CRIT CARE MED, V35, P1139, DOI 10.1097/01.CCM.0000259381.56526.96
  32. Pavlov VA, 2009, BRAIN BEHAV IMMUN, V23, P41, DOI 10.1016/j.bbi.2008.06.011
  33. Pinheiro NM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0120441
  34. Pozo AL, 2009, BLOOD REV, V23, P105, DOI 10.1016/j.blre.2008.10.001
  35. Prado MAM, 2002, NEUROCHEM INT, V41, P291, DOI 10.1016/S0197-0186(02)00044-X
  36. Prado VF, 2006, NEURON, V51, P601, DOI 10.1016/j.neuron.2006.08.005
  37. Rosas-Ballina M, 2008, P NATL ACAD SCI USA, V105, P11008, DOI 10.1073/pnas.0803237105
  38. Rosas-Ballina M, 2011, SCIENCE, V334, P98, DOI 10.1126/science.1209985
  39. Santos MS, 2001, J NEUROCHEM, V78, P1104, DOI 10.1046/j.1471-4159.2001.00494.x
  40. Soriano FG, 2002, SHOCK, V17, P286, DOI 10.1097/00024382-200204000-00008
  41. Tracey KJ, 2007, J CLIN INVEST, V117, P289, DOI 10.1172/JCI30555
  42. Tracey KJ, 2002, NATURE, V420, P853, DOI 10.1038/nature01321
  43. Tracey KJ, 2005, J CLIN INVEST, V115, P3304, DOI [10.1172/JCI27259, DOI 10.1172/JCI27259]
  44. Valdes-Ferrer SI, 2013, J INTERN MED, V274, P381, DOI 10.1111/joim.12104
  45. van Westerloo DJ, 2005, J INFECT DIS, V191, P2138, DOI 10.1086/430323
  46. Vandijck DM, 2006, ACTA CLIN BELG, V61, P220