Single-round multiplex PCR with species-specific mitochondrial primers of P. falciparum, P. vivax/P. simium and P. malariae/P. brasilianum: Comparison with standard techniques

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
JOURNAL OF MICROBIOLOGICAL METHODS, v.193, article ID 106398, 11p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
A single-round multiplex PCR (mPCR) with species-specific primers (SSP) of three mitochondrial genes of Plasmodium, namely COX I, COX III and CYT B, was compared to microscopy and 18S rRNA semi-nested PCR, nested-PCR and Real Time PCRs (*PCRs). Each parasite has between 20 and 150 mitochondria and each mitochondria has one copy of each target gene, while 18S rRNA gene is repeated 4 to 8 times. The specificity of mPCR was assessed by testing Plasmodium from rodents and birds, parasites responsible for other endemic diseases in the country such as schistosomiasis, Chagas disease and leishmaniasis in addition to microorganisms that, like Plasmodium, can cause anemia (Bartonella henselae, Babesia vogeli, Rickettsia vini). No cross-reactions were detected. From a total of 149 specimens from suspected cases of malaria were tested, 97 were positive by microscopy (49 P. falciparum, 38 P. vivax, 6 P. malariae, 4 P. falciparum/P. vivax- mixed infections) and 52 were negative; 148 samples were positive by *PCRs (49 P. falciparum, 53 P. vivax, 7 P. malariae and 39 mixed infections) and one was negative; 146 were positive by mPCR (49 P. falciparum, 56 P. vivax, 9 P. malariae and 32 mixed infections) and three were negative. The comparison of groups found statistically significant differences between microscopy vs.*PCRs or vs. mPCR (p-values <0.0001), but no difference was found between mPCR vs. *PCRs (p=0.946). The agreement in the identification of Plasmodium species was only regular, with Kappa indices of 0.407 (microscopy vs. *PCRs), 0.433 (microscopy vs. mPCR) and 0.558 (*PCRs vs. mPCR). In conclusion, the diagnostic performance of mPCR was comparable to those of *PCRs, and superior to microscopy, although the identification of Plasmodium species showed many disagreements. In conclusion, a sensitive and specific one-round SSP multiplex PCR, capable of simultaneously detecting and identifying P. falciparum, P. vivax/P. simium and P. malariae/P. brasilianum may be useful in resource-constrained countries where quantitative amplifications are not yet fully accessible.
Palavras-chave
Malaria, Mitochondrial genes, Plasmodium species, Species-specific primers, Sequence-specific primers (SSP), Multiplex-PCR
Referências
  1. [Anonymous], 2019, WORLD MALARIA REPORT
  2. Aslanzadeh J, 2004, ANN CLIN LAB SCI, V34, P389
  3. Beller EM, 2002, MED J AUSTRALIA, V177, P565, DOI 10.5694/j.1326-5377.2002.tb04955.x
  4. Borst A, 2004, EUR J CLIN MICROBIOL, V23, P289, DOI 10.1007/s10096-004-1100-1
  5. Brasil P, 2017, LANCET GLOB HEALTH, V5, pE1038, DOI 10.1016/S2214-109X(17)30333-9
  6. Broeders S, 2014, TRENDS FOOD SCI TECH, V37, P115, DOI 10.1016/j.tifs.2014.03.008
  7. Buery JC, 2017, MALARIA J, V16, DOI 10.1186/s12936-017-2080-9
  8. Burd EM, 2010, CLIN MICROBIOL REV, V23, P550, DOI 10.1128/CMR.00074-09
  9. Burkardt HJ, 2000, CLIN CHEM LAB MED, V38, P87, DOI 10.1515/CCLM.2000.014
  10. Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797
  11. Chavatte JM, 2015, MALARIA J, V14, DOI 10.1186/s12936-015-0985-8
  12. Chew CH, 2012, J CLIN MICROBIOL, V50, P4012, DOI 10.1128/JCM.06454-11
  13. Chiodini PL, 2014, PARASITOLOGY, V141, P1873, DOI 10.1017/S0031182014001371
  14. Collins WE, 2007, CLIN MICROBIOL REV, V20, P579, DOI 10.1128/CMR.00027-07
  15. Cunha MG, 2009, ACTA TROP, V111, P35, DOI 10.1016/j.actatropica.2009.02.003
  16. Padilha MAD, 2019, MALARIA J, V18, DOI 10.1186/s12936-019-2938-0
  17. de Pina-Costa A, 2014, MEM I OSWALDO CRUZ, V109, P618, DOI 10.1590/0074-0276140228
  18. dos Santos EH, 2020, PARASITOL INT, V76, DOI 10.1016/j.parint.2020.102069
  19. Echeverry DF, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1185-x
  20. Ferreira MU, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1335-1
  21. Ferreira MU, 1998, J EUKARYOT MICROBIOL, V45, P131, DOI 10.1111/j.1550-7408.1998.tb05080.x
  22. Guimaraes AE, 2000, REV SAUDE PUBL, V34, P243, DOI 10.1590/S0034-89102000000300006
  23. Hristov AD, 2014, MEM I OSWALDO CRUZ, V109, P1014, DOI 10.1590/0074-0276140229
  24. Kantele A, 2011, CLIN INFECT DIS, V52, P1356, DOI 10.1093/cid/cir180
  25. Kimura Masatsugu, 1997, Parasitology International, V46, P91, DOI 10.1016/S1383-5769(97)00013-5
  26. Kralik P, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.00108
  27. Lalremruata A, 2015, EBIOMEDICINE, V2, P1186, DOI 10.1016/j.ebiom.2015.07.033
  28. Leoratti FMS, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-186
  29. Lloyd YM, 2018, TROP MED HEALTH, V46, DOI 10.1186/s41182-018-0100-2
  30. Mangold KA, 2005, J CLIN MICROBIOL, V43, P2435, DOI 10.1128/JCM.43.5.2435-2440.2005
  31. Ngasala B, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-199
  32. OLERUP O, 1992, TISSUE ANTIGENS, V39, P225, DOI 10.1111/j.1399-0039.1992.tb01940.x
  33. Padley D, 2003, ANN TROP MED PARASIT, V97, P131, DOI 10.1179/000349803125002977
  34. Pincelli A, 2018, AM J TROP MED HYG, V99, P73, DOI 10.4269/ajtmh.18-0135
  35. Rougemont M, 2004, J CLIN MICROBIOL, V42, P5636, DOI 10.1128/JCM.42.12.5636-5643.2004
  36. Setiadi W, 2016, MALARIA J, V15, DOI 10.1186/s12936-016-1272-z
  37. Singh B, 1999, AM J TROP MED HYG, V60, P687, DOI 10.4269/ajtmh.1999.60.687
  38. SNOUNOU G, 1993, MOL BIOCHEM PARASIT, V61, P315, DOI 10.1016/0166-6851(93)90077-B
  39. Stanis CS, 2016, TURK J MED SCI, V46, P207, DOI 10.3906/sag-1411-114
  40. Talameh J, 2012, PHARMACOGENOMICS, V13, P353, DOI [10.2217/PGS.11.171, 10.2217/pgs.11.171]
  41. Wilson RJM, 1997, MICROBIOL MOL BIOL R, V61, P1